
Unix Users’s Guide

October 11, 2022

Jason W. Bacon

Unix Users’s Guide ii

Copyright © 2013 Jason W. Bacon, Lars E. Olson, SeWHiP, All Rights Reserved.

Permission to use, copy, modify and distribute the Unix User’s Guide for any purpose and without fee is hereby granted in
perpetuity, provided that the above copyright notice and this paragraph appear in all copies.

Unix Users’s Guide iii

Contents

1 Using Unix 1

1.1 KISS: Keep It Simple, Stupid . 1

1.1.1 Practice . 2

1.2 What is Unix? . 2

1.2.1 Aw, man... I Have to Learn Another System? . 2

1.2.2 Operating System or Religion? . 4

1.2.3 The Unix Standard API . 7

1.2.4 Shake Out the Bugs . 8

1.2.5 The Unix Standard UI . 8

1.2.6 Fast, Stable and Secure . 9

1.2.7 Sharing Resources . 9

1.2.8 Practice . 10

1.3 Unix User Interfaces . 11

1.3.1 Graphical User Interfaces (GUIs) . 11

1.3.2 X11 on Mac OS X . 13

1.3.3 Command Line Interfaces (CLIs): Unix Shells . 14

1.3.4 Terminals . 16

1.3.5 Basic Shell Use . 18

1.3.6 Practice . 20

1.4 Still Need Windows? Don’t Panic! . 21

1.4.1 Cygwin: Try This First . 21

1.4.2 Windows Subsystem for Linux: Another Compatibility Layer . 34

1.4.3 Practice . 35

1.5 Logging In Remotely . 35

1.5.1 Unix to Unix . 36

1.5.2 Windows to Unix . 37

Cygwin . 37

PuTTY . 37

1.5.3 Terminal Types . 37

1.5.4 Practice . 39

Unix Users’s Guide iv

1.6 Unix Command Basics . 39

1.6.1 Practice . 41

1.7 Basic Shell Tools . 42

1.7.1 Common Unix Shells . 42

1.7.2 Command History . 42

1.7.3 Auto-completion . 43

1.7.4 Command-line Editing . 43

1.7.5 Globbing (File Specifications) . 44

1.7.6 Practice . 45

1.8 Processes . 46

1.8.1 Practice . 47

1.9 The Unix File System . 47

1.9.1 Unix Files . 47

Text vs Binary Files . 48

Unix vs. Windows Text Files . 48

1.9.2 File system Organization . 49

Basic Concepts . 49

Absolute Path Names . 50

Current Working Directory . 50

Relative Path Names . 51

Avoid Absolute Path Names . 52

Special Directory Names . 52

1.9.3 Ownership and Permissions . 53

Overview . 53

Viewing Permissions . 54

Setting Permissions . 54

1.9.4 Practice . 56

1.10 Unix Commands and the Shell . 57

1.10.1 Internal Commands . 58

1.10.2 External Commands . 58

1.10.3 Getting Help . 58

1.10.4 A Basic Set of Unix Commands . 60

File and Directory Management . 60

Shell Internal Commands . 62

Simple Text File Processing . 63

Text Editors . 64

Networking . 64

Identity and Access Management . 65

Terminal Control . 65

Unix Users’s Guide v

1.10.5 Practice . 67

1.11 POSIX and Extensions . 68

1.11.1 Practice . 69

1.12 Subshells . 69

1.12.1 Practice . 70

1.13 Redirection and Pipes . 70

1.13.1 Device Independence . 70

1.13.2 Redirection . 72

1.13.3 Special Files in /dev . 74

1.13.4 Pipes . 74

1.13.5 Misusing Pipes . 76

1.13.6 Practice . 78

1.14 Power Tools for Data Processing . 79

1.14.1 Introduction . 79

1.14.2 grep . 80

1.14.3 awk . 82

1.14.4 cut . 84

1.14.5 sed . 84

1.14.6 sort . 85

1.14.7 tr . 86

1.14.8 find . 87

1.14.9 xargs . 88

1.14.10 bc . 89

1.14.11 tar . 91

1.14.12 gzip, bzip2, xz . 91

1.14.13 zip, unzip . 92

1.14.14 time . 92

1.14.15 top . 92

1.14.16 iostat . 92

1.14.17 netstat . 92

1.14.18 iftop . 92

1.14.19 curl, fetch, wget . 92

1.14.20 Practice . 93

1.15 File Transfer . 94

1.15.1 File Transfers from Unix . 95

1.16 Environment Variables . 96

1.16.1 Self-test . 97

1.17 Shell Variables . 98

1.17.1 Self-test . 98

Unix Users’s Guide vi

1.18 Process Control . 99

1.18.1 External Commands . 99

1.18.2 Special Key Combinations . 100

1.18.3 Internal Shell Commands and Symbols . 100

1.18.4 Self-test . 101

1.19 Remote Graphics . 101

1.19.1 Configuration Steps Common to all Operating Systems . 102

1.19.2 Graphical Programs on Windows with Cygwin . 103

Installation . 103

Configuration . 103

Start-up . 103

1.20 Where to Learn More . 103

2 Unix Shell Scripting 104

2.1 What is a Shell Script? . 104

2.1.1 Self-test . 104

2.2 Scripts vs Programs . 104

2.2.1 Self-test . 105

2.3 Why Write Shell Scripts? . 105

2.3.1 Efficiency and Accuracy . 105

Self-test . 105

2.3.2 Documentation . 106

Self-test . 106

2.3.3 Why Unix Shell Scripts? . 106

Self-test . 107

2.3.4 Self-test . 107

2.4 Which Shell? . 107

2.4.1 Common Shells . 107

2.4.2 Self-test . 107

2.5 Writing and Running Shell Scripts . 108

2.5.1 Self-test . 111

2.6 Shell Start-up Scripts . 111

2.6.1 Self-test . 113

2.7 Sourcing Scripts . 113

2.7.1 Self-test . 113

2.8 Scripting Constructs . 113

2.9 Strings . 114

2.10 Output . 114

2.10.1 Self-test . 115

Unix Users’s Guide vii

2.11 Shell and Environment Variables . 115

2.11.1 Assignment Statements . 116

2.11.2 Variable References . 117

2.11.3 Using Variables for Code Quality . 118

2.11.4 Output Capture . 119

2.11.5 Self-test . 120

2.12 Hard and Soft Quotes . 120

2.12.1 Self-test . 121

2.13 User Input . 121

2.13.1 Self-test . 122

2.14 Conditional Execution . 122

2.14.1 Command Exit Status . 122

2.14.2 If-then-else Statements . 123

Bourne Shell Family . 123

C shell Family . 127

2.14.3 Conditional Operators . 128

2.14.4 Case and Switch Statements . 130

2.14.5 Self-test . 132

2.15 Loops . 133

2.15.1 For and Foreach . 133

2.15.2 While Loops . 134

2.15.3 Self-test . 136

2.16 Generalizing Your Code . 136

2.16.1 Hard-coding: Failure to Generalize . 136

2.16.2 Generalizing with User Input . 136

2.16.3 Generalizing with Command-line Arguments . 137

Bourne Shell Family . 137

C shell Family . 137

2.16.4 Self-test . 138

2.17 Scripting an Analysis Pipeline . 138

2.17.1 What’s an Analysis Pipeline? . 138

2.17.2 Where do Pipelines Come From? . 138

2.17.3 Implementing Your Own Pipeline . 139

2.17.4 An Example Genomics Pipeline . 139

2.18 Functions and Calling other Scripts . 141

2.18.1 Bourne Shell Functions . 142

2.18.2 C Shell Separate Scripts . 143

2.18.3 Self-test . 143

2.19 Alias . 143

Unix Users’s Guide viii

2.20 Shell Flags and Variables . 144

2.21 Arrays . 145

2.22 Good and Bad Practices . 146

2.23 Here Documents . 146

2.24 Common Unix Tools Used in Scripts . 147

2.24.1 Grep . 147

2.24.2 Stream Editors . 148

2.24.3 Tabular Data Tools . 149

2.24.4 Sort/Uniq . 150

2.24.5 Perl, Python, and other Scripting Languages . 152

I Systems Management 153

3 Systems Management 154

3.1 Guiding Principals . 154

3.2 Attachment is the Cause of All Suffering . 155

4 Platform Selection 156

4.1 General Advice . 156

4.2 Choosing Your Unix the Smart Way . 157

4.3 RHEL/CentOS Linux . 158

4.4 FreeBSD . 158

4.5 Running a Desktop Unix System . 160

4.6 Unix File System Comparison . 162

4.7 Network File System . 163

5 System Security 164

5.1 Securing a new System . 164

5.2 I’ve Been Hacked! . 164

6 Software Management 166

6.1 The Stone Age vs. Today . 166

6.2 Goals . 166

6.3 The Computational Science Time Line . 167

6.3.1 Development Time . 167

6.3.2 Deployment Time . 167

6.3.3 Learning Time . 167

6.3.4 Run Time . 167

6.4 Package Managers . 168

6.4.1 Motivation . 168

6.4.2 FreeBSD Ports . 169

6.4.3 Pkgsrc . 171

6.5 What’s Wrong with Containers? . 172

Unix Users’s Guide ix

7 Running Multiple Operating Systems 173

8 Index 177

Unix Users’s Guide x

List of Figures

1.1 Hot Keys . 15

1.2 Sample of a Unix File system . 49

1.3 Colorized grep output . 81

7.1 Windows as a Guest under VirtualBox on a Mac Host . 174

7.2 CentOS 7 with Gnome Desktop as a Guest under VirtualBox . 175

7.3 FreeBSD with Lumina Dekstop as a Guest under VirtualBox . 176

Unix Users’s Guide xi

List of Tables

1.1 Partial List of Unix Operating Systems . 4

1.2 Pkgsrc Build Times . 21

1.3 Default Key Bindings in some Shells . 43

1.4 Globbing Symbols . 44

1.5 Special Directory Symbols . 52

1.6 Common hot keys in more . 59

1.7 Unix Commands . 66

1.8 Common Extensions . 68

1.9 Standard Streams . 72

1.10 Redirection Operators . 72

1.11 Run times of pipes with cat . 78

1.12 RE Patterns . 80

1.13 Reserved Environment Variables . 97

2.1 Conventional script file name extensions . 108

2.2 Shell Start Up Scripts . 112

2.3 Printf Format Specifiers . 115

2.4 Special Character Sequences . 115

2.5 Test Command Relational Operators . 125

2.6 Test command file operations . 126

2.7 C Shell Relational Operators . 128

2.8 Shell Conditional Operators . 129

2.9 Common Regular Expression Symbols . 148

6.1 Computation Time Line . 167

6.2 Package Manager Comparison . 169

Unix Users’s Guide 1 / 177

Chapter 1

Using Unix

Before You Begin
If you think the word "Unix" refers to Sumerian servants specially "trained" to guard a harem, you’ve come to the right place.
This chapter is designed as a tutorial for users with little or no Unix experience.
If you are following this guide as part of an ungraded workshop, please feel free to work together on the exercises in this text.
It would be very helpful if experienced users could assist less experienced users during the "practice breaks" in order to keep
the class moving forward and avoid leaving anyone behind.

1.1 KISS: Keep It Simple, Stupid

Most people make most things far more complicated than they need to be. Engineers and scientists, especially so.

Aside
To the engineer, all matter in the universe can be placed into one of two categories:

1. Things that need to be fixed

2. Things that will need to be fixed after I’ve had a few minutes to play with them

Engineers like to solve problems. If there are no problems available, they will create their own problems. Normal people don’t
understand this concept; they believe that if it ain’t broke, don’t fix it. Engineers believe that if it ain’t broke, it doesn’t have
enough features yet.
No engineer can look at a television remote control without wondering what it would take to turn it into a stun gun. No engineer
can take a shower without wondering whether some sort of Teflon coating would make showering unnecessary. To the engineer,
the world is a toy box full of sub-optimized and feature-poor toys.
-- The Engineer Identification Test (Anonymous)

Avoid people who tend to look for the most "sophisticated" solution to a problem. Those who look for the simplest solution are
more productive, more rational, and more fun to have a beer with. For more amusement on the subject, look up the story of the
king’s toaster.

Simplicity is the ultimate sophistication. We achieve more when we make things simple for ourselves. We achieve less when we
make things complicated. Most people choose the latter. Complexity is the product of carelessness or ego, and simplicity is the
product of a wisdom and clarity of thought.

The original Unix designers were an example of wisdom and clarity. Unix is designed to be as simple and elegant as possible.
Some things may not seem intuitive at first, but this is probably because the first idea you came up with is not as elegant as the
Unix way. The Unix developers had the wisdom to constantly look for simpler ways to implement solutions instead going with

Unix Users’s Guide 2 / 177

what seemed intuitive at first glance. Learning the Unix way will therefore make you a wiser and happier computer user. I speak
from experience.

Unix is not hard to learn. You may have gotten the impression that it’s a complicated system meant for geniuses while listening
to geniuses talk about it. Don’t let them fool you, though. The genius ego compels every genius to make things sound really
hard, so you’ll think they’re smarter than you.

Another challenge with learning anything these days is filtering out the noise on the Internet. Most tutorials on any given subject
are incomplete and contain misinformation or bad advice. As a result, new users are often led in the wrong direction and hit a
dead end before long. One of the goals of this guide is a show a simple, sustainable, portable, and expandable approach to using
Unix systems. This will reduce your learning curve by an order of magnitude.

Most researchers don’t know enough about Unix. As a result, their productivity suffers dramatically. Unix has grown immensely
since it was created, but the reality is, you don’t need to know a lot in order to use Unix effectively. You can become more
sophisticated over time if you want, but most Unix users don’t really need to. It may be better to stick to the KISS principal
(Keep It Simple, Stupid) and focus on learning to use the basic tools well rather than a learning a huge collection of tools and
using them poorly. It’s quality vs quantity. Knowledge is not wisdom. Wisdom is knowing how to apply it effectively.

Aside Einstein was once asked how many feet are in a mile. His reply: "I don’t know. Why should I fill my brain with facts I can
find in two minutes in any standard reference book?"

Many martial arts students like to collect "forms" (choreographed sequences of moves), for the sake of bragging rights. Knowing
more forms does not improve one’s Kung Fu, however. The term Kung Fu essentially means "skill". A master is someone who
can demonstrate mastery of a few forms, not knowledge of many. This depth of understanding does far more for both self-defense
capability and personal development than a shallow knowledge of many forms. Develop your Unix Kung Fu in the same way.
Aim to become a master rather than an encyclopedia.

Unix is designed to be as simple as possible and to allow you to work as fast as possible, by staying out of your way. Many
other systems will slow you down by requiring you to use cumbersome user interfaces or spend time learning new proprietary
methods. As you become a master of Unix, your productivity will be limited only by the speed of the hardware and programs
you run.

If something is proving difficult to do under Unix, you’re probably going about it the wrong way. There is almost always an
easier way, and if there isn’t, then you probably shouldn’t be trying to do what you’re trying to do. If it were a wise thing to
do, some Unix developer would have invented an elegant solution by now. Adapt to the wisdom of those who traveled this road
before you, and life will become simpler.

1.1.1 Practice

1. What’s the engineer’s motto regarding things that ain’t broke?

2. Why do many people believe that Unix is hard to learn?

3. Is it better to accumulate vast amounts of knowledge or to become highly skilled using the fundamentals? Why?

4. What is the core principle of Unix design? Explain.

1.2 What is Unix?

1.2.1 Aw, man... I Have to Learn Another System?

Well, yeah, but it’s the last time, I promise. As you’ll see in the sections that follow, once you’ve learned to use Unix, you’ll be
able to use your new skills on virtually any computer. Over time you’ll get better and better at it, and never have to start over
from scratch again.

With rare exceptions, if you plan to do computational research, you have two choices:

Unix Users’s Guide 3 / 177

• Learn to use Unix.

• Rely on the charity of others.

Most scientific software runs only on Unix and very little of it will ever have a graphical or other user interface that allows you
to run it without knowing Unix.

The vast majority of high performance computing (HPC) clusters run Unix. You will need basic Unix skills to utilize HPC and
HPC clusters generally do not offer a graphical interface. Some HPC administrators attempt to provide for people intent on
avoiding Unix, but the results are severely limiting at best.

There have been many attempts to provide access to scientific software via web interfaces, but most of them are abandoned after
a short time. People create them with good intentions, but without realizing that they will need to pour effort into maintenance
for many years to come. Writing software is like adopting a puppy: It’s fun and rewarding, but you need to be committed for the
long-term.

In order to be independent in your research computing, you must know how to use Unix in the traditional way. This is the reality
of research computing. It’s much easier to adapt yourself to reality than to adapt reality to yourself. This chapter will help you
become proficient enough to survive and even flourish on your own.

Unix began as the trade name of an operating system developed at AT&T Bell Labs around 1970. It quickly became the model on
which most subsequent operating systems have been based. Eventually, "Unix" came into common use to refer to any operating
system mimicking the original Unix, much like "Band-Aid" is now used to refer to any adhesive bandage purchased in a drug
store.

Over time, formal standards were developed to promote compatibility between the various Unix-like operating systems, and
eventually, Unix ceased to be a trade name. Today, the name Unix officially refers to a set of standards to which most operating
systems conform.

Look around the room and you will see many standards that make our lives easier. (Wall outlets, keyboards, USB ports,
light bulb sockets, etc.) All of these standards make it possible to buy interchangeable devices from competing companies.
This competition forces the companies to offer better value. They need to offer a lower price and/or better quality than their
competition in order to stay in business.

The Unix standards serve the same purpose as all standards; to foster collaboration, give the consumer freedom of choice, reduce
unnecessary learning time, and annoy developers who would rather ignore what everyone else is doing and reinvent the wheel at
their employer’s expense to gratify their own egos. They allow us to become operating system agnostic nomads, readily switching
from one Unix system to another as our needs or situations dictate.

In a nutshell, Unix is every operating system you’re likely to use except Microsoft Windows. Table 1.1 provides links to many
Unix-compatible operating systems. This is not a comprehensive list. Many more Unix-like systems can be found by searching
the web.

Note Apple’s Mac OS X has many proprietary extensions, including Apple’s own user interface, but is almost fully Unix-
compatible and can be used much like any other Unix system by simply choosing not to use the Apple extensions. It is
largely based on FreeBSD and other BSD-based components like the Mach kernel.

Note
When you develop programs for any Unix-compatible operating system, those programs can be easily used by people running
any other Unix-compatible system. Most Unix programs can even be used on a Microsoft Windows system with the aid of a
compatibility layer such as Cygwin (Section 1.4.1).
Once you’ve learned to use one Unix system, you’re ready to use any of them. Hence, Unix is the last system you’ll ever need
to learn!

Unix systems run on everything from your cell phone to the world’s largest supercomputers. Unix is the basis for Apple’s iOS,
the Android mobile OS, embedded systems such as networking equipment and robotics controllers, most PC operating systems,
and many large mainframe systems. Many Unix systems are completely free (as in free beer) and can run tens of thousands of
high quality free software packages. As an extreme example, NetBSD runs on dozens of different CPU architectures, including
some hobbyist systems such as Commodore Amigas, 68k-based Macs, etc.

It’s a good idea to regularly use more than one Unix system. This will make you aware of how much they all have in common
and what the subtle differences are.

https://wiki.netbsd.org

Unix Users’s Guide 4 / 177

Name Type URL
AIX (IBM) Commercial https://en.wikipedia.org/wiki/IBM_AIX
CentOS GNU/Linux Free https://en.wikipedia.org/wiki/CentOS
Debian GNU/Linux Free https://en.wikipedia.org/wiki/Debian
DragonFly BSD Free https://en.wikipedia.org/wiki/DragonFly_BSD
FreeBSD Free https://en.wikipedia.org/wiki/FreeBSD
GhostBSD Free https://en.wikipedia.org/wiki/GhostBSD
HP-UX Commercial https://en.wikipedia.org/wiki/HP-UX
JunOS (Juniper Networks) Commercial https://en.wikipedia.org/wiki/Junos
Linux Mint Free https://en.wikipedia.org/wiki/Linux_Mint
MidnightBSD Free https://en.wikipedia.org/wiki/MirOS_BSD
NetBSD Free https://en.wikipedia.org/wiki/NetBSD
OpenBSD Free https://en.wikipedia.org/wiki/OpenBSD
OpenIndiana Free https://en.wikipedia.org/wiki/OpenIndiana
OS X (Apple Macintosh) Commercial https://en.wikipedia.org/wiki/OS_X
Redhat Enterprise Linux Commercial https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
Slackware Linux Free https://en.wikipedia.org/wiki/Slackware
SmartOS Free https://en.wikipedia.org/wiki/SmartOS
Solaris Commercial https://en.wikipedia.org/wiki/Solaris_(operating_system)
SUSE Enterprise Linux Commercial https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
Ubuntu Linux (See also
Kubuntu, Lubuntu, Xubuntu) Free https://en.wikipedia.org/wiki/Ubuntu_(operating_system)

Table 1.1: Partial List of Unix Operating Systems

1.2.2 Operating System or Religion?

Aside
Keep the company of those who seek the truth, and run from those who have found it.
-- Vaclav Havel

The more confident someone is in their views, the less they probably know about the subject. As we gain life experience and
wisdom, we become less certain about everything and more comfortable with that uncertainty. What looks like confidence is
usually a symptom of ignorance of our own ignorance, generally fueled by ego.

If you discuss operating systems at length with most people, you will discover, as the ancient philosopher Socrates did while
discussing many topics with "experts", that their views are not based on broad knowledge and objective comparison. Before
taking advice from anyone, it’s a good idea to find out how much they really know and what role emotion and ego play in their
preferences. This process of questioning has become known as a "Socratic examination". Note, however, that if you embarrass
the wrong people, it may get you executed, as it did Socrates.

The whole point of the Unix standard, like any other standard, is freedom of choice. However, you won’t have any trouble finding
evangelists for a particular brand of Unix-compatible operating system on whom this point is lost. "Discussions" about the merits
of various Unix implementations often involve arrogant pontification and emotional outbursts, possibly involving some cussing.

If you step back and ask yourself what kind of person gets emotionally attached to a piece of software, you’ll realize whose
advice you should value and whose you should not. Rational people will keep an open mind and calmly discuss the objective
measures of an OS, such as performance, reliability, security, easy of maintenance, specific capabilities, etc. They will also back
up their opinions with facts rather than try to bully you into validating their views.

If someone tells you that a particular operating system "isn’t worth using", "is way behind the times", or "sucks wads", rather
than asking you what you need and objectively discussing alternatives, this is someone whose advice you can safely ignore. They
are not interested in helping you. They need you to validate their opinions, because those opinions are not supported by facts.

https://en.wikipedia.org/wiki/IBM_AIX
https://en.wikipedia.org/wiki/CentOS
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/DragonFly_BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/GhostBSD
https://en.wikipedia.org/wiki/HP-UX
https://en.wikipedia.org/wiki/Junos
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/MirOS_BSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/OpenIndiana
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
https://en.wikipedia.org/wiki/Slackware
https://en.wikipedia.org/wiki/SmartOS
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)

Unix Users’s Guide 5 / 177

Aside
We’re all capable of rational thought, but sometimes we only use it to rationalize what we want to believe, despite obvious
evidence to the contrary.
"I don’t understand why some people wash their bath towels. When I get out of the shower, I’m the cleanest object in my house.
In theory, those towels should be getting cleaner every time they touch me. By the way, are towels supposed to bend?"
-- Wally (Dilbert)

Evangelists are easy to spot. They will instantly assess your needs without asking you a single question and proceed to explain
(often aggressively) why you should be using their favorite operating system or programming language. They invariably have
limited or no experience with other alternatives. This is easy to expose with a few simple questions. "How many years of
experience to you have with it?" The answer is usually close to 0. "What are the specific advantages and disadvantages?" The
response to this will usually be stuttering, silence, or double-talk. Ask them to clarify further and it won’t take long to expose
their ignorance.

Ultimately, the system that most easily runs your programs to your satisfaction is the best one for you. That could turn out to be
BSD, Cygwin, Linux, Mac OS X, OpenIndiana, or any other. Someone who knows what they’re doing and truly wants to help
you will always begin by asking questions in order to better understand your needs. "What program(s) do you need to run?", "Do
they require any special hardware?", "Do you need to run any commercial software, or just open source?", etc. They will then
consider multiple alternatives and inform you about the capabilities of each one that might match your needs.

There is another reason besides ego that people often choose inappropriate solutions to a problem; the desire to use what they
know instead of being open to learning a better approach.

Aside When all you have is a hammer, everything looks like a nail.

I regularly experiment with various Unix variants to evaluate their ease of use, reliability, and resource requirements. This is easy
to do using virtual machines (See Chapter 7.) My personal preference for running Unix software (for now, these could change in
the distant future) are listed below. All of these systems are somewhat interchangeable with each other and the many other Unix
based systems available, so deviating from these recommendations will generally not lead to catastrophe.

More details on choosing a Unix platform are provided in Chapter 4.

• Servers running mostly open source software: FreeBSD.

FreeBSD is extremely fast, reliable, and secure. It is known as a "set-and-forget" operating system, since it requires very
little attention after initial installation and configuration. Software management is very easy with FreeBSD ports, which offers
over 30,000 software packages (not counting different builds of the same software). The ports system supports installation
via either generic binary packages, or you can just as easily build from source with custom options or optimizations for your
specific CPU. With the Linux compatibility module, FreeBSD can directly run most Linux closed-source programs with no
performance penalty and a little added effort and resources.

Unix Users’s Guide 6 / 177

FreeBSD with the Lumina desktop environment

• Servers running mainly or commercial applications or CUDA GPU software: Enterprise Linux (AlmaLinux, CentOS, RHEL,
Rocky Linux, Scientific Linux, SUSE).

These systems are designed for better reliability, security, and long-term binary compatibility than bleeding-edge Linux sys-
tems. They are the only platforms besides MS Windows and Mac OS X supported by many commercial software vendors.
While you may be able to get some commercial engineering software running on Ubuntu or Mint, it is often difficult and the
company will not provide support. Packages in the native Yum repository of enterprise Linux are generally outdated, but more
recent open source software can be installed using a separate add-on package manager such as pkgsrc.

• An average Joe who wants to browse the web, use a word processor, etc.: Debian, GhostBSD, Ubuntu, or similar open source
Unix system with graphical installer and management tools, or Macintosh.

These systems make it easy to install software packages and system updates, with minimal risk of breakage that Joe would not
know how to fix.

Unix Users’s Guide 7 / 177

Debian Linux

• Someone who uses mostly Windows-based software, but needs a basic Unix environment for software development or con-
necting to other Unix systems: A Windows PC with Cygwin.

Cygwin is free, entirely open source, and very easy to install in about 10 minutes on most Windows systems. It has some
performance bottlenecks, fewer packages than a real Unix system running on the same machine, and a few other limitations,
but it’s more than adequate for the needs of many typical users. See Section 1.4.1 for details.

1.2.3 The Unix Standard API

Programmer time is expensive. Writing a program twice costs twice as much. Unix standards solve this problem.

Unix systems adhere to an application program interface (API) standard, which means that programs written for one Unix-based
system can be run on any other with little or no modification, even on completely different hardware. For example, programs
written for an Intel/AMD-based Linux system will also run an ARM-based Mac, or FreeBSD on an ARM, Power, or RISC-V
processor.

An API defines a set of functions (subprograms) used to request services from the operating system, such as opening a file,
allocating memory, running another program, etc. These functions are the same on all Unix systems, but some of them are
different on Windows and other non-standard systems. For example, to open a file in a C program on any Unix system, one
would typically use the fopen() function:

FILE *fopen(const char *filename, const char *mode);

Microsoft compilers support fopen() as well, but also provide another function for the same purpose that only works on Windows:

errno_t fopen_s(FILE** pFile, const char *filename, const char *mode);

Unix Users’s Guide 8 / 177

Note Microsoft claims that fopen_s() is more secure, which is debatable. Note however, that even if this is true, the existing
fopen() function itself could have been made more secure rather than creating a separate, non-portable function that does the
same thing. Non-standard functions like fopen_s() mainly benefit the vendor by making it harder to port software to a competing
platform.

Here are a few other standard Unix functions that can be used in programs written in C and most other compiled languages.
These functions can be used on any Unix system, regardless of the type of hardware running it. Some of these may also work in
Windows, but for others, Windows uses a completely different function to achieve the same goal.

chdir() // Change current working directory
execl() // Load and run another program
mkdir() // Create a directory
unlink() // Remove a file
sleep() // Pause execution of the process
DisplayWidth() // Get the width of the graphical screen

Because the Unix API is platform-independent, it is also possible to compile and run most Unix programs on Windows with the
aid of a compatibility layer, software that bridges the difference between two platforms. (See Section 1.4.1 for details.) It is not
generally possible to compile and run Windows software on Unix, however, because Windows has many features specific to PC
hardware.

Since programs written for Unix can be run on almost any computer, including Windows computers, they will never have to be
rewritten in order to run somewhere else. Programs written for non-Unix platforms will only run on that platform, and will have
to be rewritten (at least partially) in order to run on any other system. This leads to an enormous waste of man-hours that could
have gone into creating something new. They may also become obsolete as they proprietary systems for which they were written
evolve. For example, most programs written for MS DOS and Windows 3.x are no longer in use today, while programs written
for Unix around that same time will still work on modern Unix systems.

1.2.4 Shake Out the Bugs

Another advantage of programming on standardized platforms is the ability to easily do more thorough testing. Compiling and
running a program on multiple operating systems and with multiple compilers will almost always expose bugs that you were
unaware of while running it on the original development system. The same bug will have different effects on different operating
systems, with different compilers or interpreters, or with different compile options (e.g. with and without optimization).

For example, an errant array subscript or pointer might cause corruption in a non-critical memory location in some environments,
while causing the program to crash in others.

A program may seem to be fine when you compile it with Clang and run it on your Mac, but may not compile, or may crash
when compiled with GCC on a Linux machine.

Finding bugs now may save you from the stressful situation of tracking them down under time pressure later, with an approaching
grant deadline. A bug that was invisible on your Mac for the test cases you’ve used could also show up on your Mac later, when
you run the program with different inputs.

Developing for the Unix API makes it easy to test on various operating systems and with different compilers. There are many free
BSD and Linux based systems, as well as free compilers such as Clang and GCC. Most of them can be run in a virtual machine
(Chapter 7), so you don’t even need another computer for the sake of program testing. Take advantage of this easy opportunity
to stay ahead of program bugs, so they don’t lead to missed deadlines down the road.

1.2.5 The Unix Standard UI

The Unix standards not only make programs portable, they make our knowledge as users portable as well. All Unix systems
support the same basic set of commands, which conform to standards so that they behave the same way everywhere. So, if you
learn to use FreeBSD, most of that knowledge will directly apply to Linux, Mac OS X, Solaris, etc.

Another part of the original Unix design philosophy was to do everything in the simplest way possible. As you learn Unix, you
will likely find some of its features befuddling at first. However, upon closer examination, you will often come to appreciate the

Unix Users’s Guide 9 / 177

elegance of the Unix solution to a difficult problem. If you’re observant enough, you’ll learn to apply this Zen-like simplicity to
your own work, and maybe even your everyday life.

You will also gradually recognize a great deal of consistency between various Unix commands and functions. For example,
many Unix commands support a -v (verbose) flag to indicate more verbose output, as well as a -q (quiet) flag to indicate no
unnecessary output. Over time, you will develop an intuitive feel for Unix commands, become adept at correctly guessing how
things work, and feel almost God-like at times.

Unix documentation also follows a few standard formats, which users quickly get used to, making it easier to learn new things
about commands on any Unix system.

In a nutshell, the time and effort you spend learning any Unix system will make it easy to use any other in the future. You need
only learn Unix once, and you’ll be proficient with many different implementations such as FreeBSD, Linux, and Mac OS X.

1.2.6 Fast, Stable and Secure

Since Unix systems compete directly with each other to win and retain users running the same programs, developers are highly
motivated to optimize objective measures of the system such as performance, stability, and security.

Most Unix systems operate near the maximum speed of the hardware on which they run. Unix systems typically respond faster
than other systems on the same hardware and run intensive programs in less time. Many Unix systems require far fewer resources
than non-Unix systems, leaving more disk and memory for use by your programs.

Unix systems tend to be very reliable and may run for months or even years without being rebooted. I managed a particular
FreeBSD HPC cluster for eight years. Except for some problems in the first few months that were traced to a Dell firmware bug,
none of the servers in this cluster ever crashed.

Unlike Windows, software installations almost never require a reboot, and even most security updates can be applied without
rebooting. Reboots are typically only needed following a kernel update.

Stability is critical for research computing, where computational models may run for weeks or months. Users of non-Unix
operating systems often have to choose between killing a process that has been running for weeks and neglecting critical security
updates that require a reboot.

Very few viruses or other malware programs exist for Unix systems. This is in part due to the inherently better security of Unix
systems and in part due to a strong tradition in the Unix community of discouraging users from engaging in risky practices such
as running programs under an administrator account and installing software from pop-ups on the web.

1.2.7 Sharing Resources

Your mom probably told you that it’s nice to share, but did you know it’s also more efficient?

One of the major problems for researchers in computational science is managing their own computers. Most researchers aren’t
very good at installing operating systems, managing software, apply security updates, etc., nor do they want to be. Unfortunately,
they often have to do these things in order to conduct computational research. Computers managed by a tag-team of researchers
usually end up full of junk software, out-of-date, full of security issues, and infected with malware.

Since Unix is designed from the ground up to be accessed remotely, Unix creates an opportunity to serve researchers’ needs far
more cost-effectively than individual computers for each researcher. A single Unix machine on a modern PC can support dozens
or even hundreds of users at the same time, depending how demanding their software is.

Unix Users’s Guide 10 / 177

1.2.8 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. After learning Unix, on what operating systems will you be able to use your new skills?

2. What is the major design goal of the Unix standards?

3. What is the alternative to learning Unix for computational scientists? Why?

4. Why does most scientific software lack a convenient graphical or web interface?

5. Is Unix an operating system? Why or why not?

6. What is the advantage of open standards?

7. How many different Unix-compatible operating systems exist? What does this mean for Unix users?

8. Which mainstream operating systems are Unix-compatible and which are not?

9. What types of computer hardware run Unix?

10. How much does Unix cost?

11. Which Unix operating system is the best one?

12. How should we go about choosing a Unix system? What if we make the wrong choice?

13. How do we spot evangelists who are likely to give us irrational advice?

14. What is an API?

15. What is the advantage of the Unix API over the APIs of non-Unix operating systems? What problem does it solve?

16. Can software written for Unix be run on Windows? How?

Unix Users’s Guide 11 / 177

17. How does the Unix API help us proactively eliminate software bugs?

18. What is a UI? What are three advantages of the Unix UI over the UIs of non-Unix operating systems?

19. Why are Unix-compatible operating systems faster, more stable, and more secure than many non-Unix platforms?

20. How does the inherent remote access capabilities of Unix help researchers?

1.3 Unix User Interfaces

A user interface, or UI, refers to the software that allows a person to interact with the computer. The UI provides the look and
feel of the system, and determines how easily and efficiently it can be used. (Note that ease of use and efficiency are not the
same!)

The term "MS Windows" refers to a specific proprietary operating system, and implies all of the features of that system including
the API and the UI. When people think of Windows, they think of the Start menu, the Control Panel, etc. Likewise, "Macintosh"
refers to a specific product and invokes images of the "Dock" and a menu bar at the top of the screen rather than attached to a
window.

The term "Unix", on the other hand, implies an API, but does not imply a specific UI. There are many UIs available for Unix
systems. In fact, a computer running Unix can have multiple UIs installed, and each user can choose the one they want when the
log in.

1.3.1 Graphical User Interfaces (GUIs)

A Graphical User Interface, or GUI (pronounced goo-ee), is a user interface with a graphical screen, and icons and menus we
can select using a mouse or a touch screen.

There are many different GUIs available for Unix. Some of the more popular ones include KDE, Gnome, XFCE, LXDE,
OpenBox, CDE, and Java Desktop.

A FreeBSD system running Gnome desktop.

Unix Users’s Guide 12 / 177

A FreeBSD system running KDE desktop.

A FreeBSD system running Lumina desktop.

Unix Users’s Guide 13 / 177

A FreeBSD system running XFCE desktop.

Practice Break
If you have access to a Unix GUI, log into your Unix system via the GUI interface now.

All Unix GUIs are built on top of the X11 networked graphics API. As a result, all Unix systems have the inherent ability to
display graphics on other Unix systems over a network. I.e., you can remotely log into another Unix computer over a network
and run graphical programs that display output wherever you’re sitting.

This is not the same as a remote desktop system, which mirrors the console display on a remote system. Unix systems allow
multiple users in different locations to run graphical programs independent of each other. In other words, Unix supports multiple
independent graphical displays on remote computers.

It is also not the same as a terminal server, which opens an entire desktop environment on a remote display.

With Unix and X11, we can have individual applications running on multiple remote computers displayed on the same desktop.
Doing so is easy and requires no additional software to be installed.

Most Unix GUIs support multiple virtual desktops, also known as workspaces. Virtual desktops allow a single monitor to
support multiple separate desktop images. It’s like having multiple monitors without the expense and clutter. The user can switch
between virtual desktops by clicking on a panel of thumbnail images, or in some cases by simply moving the mouse over the
edge of the screen.

1.3.2 X11 on Mac OS X

Mac OS X is Unix compatible, derived largely from FreeBSD and the Mach kernel project, with components from GNU and
other Unix-based projects.

Unix Users’s Guide 14 / 177

It differs from more traditional Unix systems like BSD and Linux, though, in that it runs Apple’s proprietary graphical API and
GUI. Native OS X programs don’t use the X11 API, but OS X can also run X11-based programs with the XQuartz add-on. See
Section 1.19 for instructions on enabling X11 for Mac.

1.3.3 Command Line Interfaces (CLIs): Unix Shells

There are two basic types of user interfaces:

• Menu-driven, where choices are displayed on the screen and the user selects one.

• Command-driven, where the user types commands that they have memorized.

A GUI is a type of menu-driven interface, where the menu items may be text or graphical icons. Some menu systems are simply
text selected by entering a number on the keyboard.

___ __ ___ __ _
/ | __ __/ /_____ / | ____/ /___ ___ (_)___

/ /| |/ / / / __/ __ \ / /| |/ __ / __ ‘__ \/ / __ \
/ ___ / /_/ / /_/ /_/ / / ___ / /_/ / / / / / / / / / /
/_/ |___,_/__/____/ /_/ |___,_/_/ /_/ /_/_/_/ /_/

Portable Command-line Systems Management
https://acadix.biz/auto-admin.php

This menu system encompasses only a small fraction of the total auto-admin
functionality. To see what else is available via the command-line, choose
"List available auto-admin scripts" below.

Full documentation is in the works and will be included in a future release.

1.. Update system
2.. User management
3.. Software management
4.. Network management
5.. Power management
6.. File system actions and settings
7.. Security settings
8.. System settings
9.. Services manager
10.. List available auto-admin scripts
Q.. Quit

Selection?

While all modern Unix systems have GUIs, much Unix work is still done via the command line interface (CLI). A CLI requires
the user to type in commands, rather than select them from a menu, much like short-answer questions vs multiple choice.

Menu-driven systems are easier to use if the system has limited functionality and you’re new to the system or use it infrequently.
However, menus are cumbersome where there is too much functionality to offer in a simple menu. Even simple menu systems
can become cumbersome for everyday use.

If a user needs access to dozens or hundreds of features, they cannot all be displayed on the screen at the same time. Hence, it will
be necessary to navigate through multiple levels of menus or screens to find the functionality you need. Doing this repeatedly
becomes annoying rather quickly. A command line interface, on the other hand, provides instant access to an unlimited number
of commands.

An ATM (automatic teller machine) is a good candidate for a menu interface. It has only a few functions and people don’t use it
every day. An ATM with a command-driven interface would likely be unpopular among banking customers.

Unix Users’s Guide 15 / 177

You might be surprised to learn that CAD (Computer Aided Design) systems have CLIs. While CAD is inherently graphical in
nature, CAD users cannot efficiently access their vast functionality through menus. Most CAD users quickly learn to use the CLI
to draw, move, and edit objects via keyboard commands.

Because menu systems slow us down, most support hot keys, special key combinations that can be used to access certain features
without navigating the menus. Hot keys are often shown in menus alongside the features they activate. For example, Command+q
can be used on macOS and Ctrl+q on Windows and most Unix GUIs to terminate many graphical applications, as shown in
Figure 1.1.

Figure 1.1: Hot Keys

It is also difficult to automate tasks in a menu-driven system. Some systems have this capability, but most do not, and the method
of automating is different for each system. Command-driven interfaces are easy to automate by placing commands in a script, a
simple text file containing a sequence of commands that might otherwise be run directly via the keyboard. Scripting is covered
in Chapter 2.

Perhaps the most important drawback of menu-driven systems is non-existence. Programming a menu system, and especially
a GUI, requires a lot of grunt-work and testing. As a result, the vast majority of open source software does not and never will
have a GUI interface. Open source developers generally don’t have the time or programming skills to build and maintain a
comprehensive GUI interface.

Caution
If you lack command-line skills, you will be limited to using a small fraction of available open source software.
In the tight competition for research grants, those who can use the command-line more often win.

The small investment in learning a command line interface can have a huge payoff, and yet many people try to avoid it. The
result is usually an enormous amount of wasted effort dealing with limited and poorly designed custom user interfaces before
eventually realizing that things would have been much easier had they learned to use the command line in the first place. It’s
amazing how much effort people put into avoiding effort...

Unix Users’s Guide 16 / 177

A shell is a program that provides the command line interface. It inputs commands from the user, interprets them, and executes
them. Using a shell, you type a command, press enter, and the command is immediately executed.

The word "shell" comes from the view of Unix as three layers of software wrapped around the hardware:

A 3-layer Model of Unix

• The innermost layer, which handles all hardware interaction for Unix programs, is called the kernel, named after the core of
a seed. The Unix kernel effectively hides the hardware from user programs and provides a standard API. This is what allows
Unix programs to run on different kinds of hardware without modification. Application programs never "see" the hardware
interface. They only see the kernel interface, which is the same regardless of hardware.

• The middle layer, the libraries, provide a wealth of standard functionality for Unix programmers to utilize. The libraries are like
a huge box of Legos that can be used to build all kinds of sophisticated programs. They include basic input/output functions,
math functions, character string functions, graphics functions, etc.

• The outermost layer, the CLI, is called a shell.

1.3.4 Terminals

All that is needed to use a Unix shell is a keyboard and a screen. In the olden days, these were provided by a simple hardware
device called a terminal, which connected a keyboard and screen to the system through a simple communication cable. These
terminals typically did not have a mouse or any graphics capabilities. They usually had a text-only screen of 80 columns by 24
lines, and offered limited capabilities such as moving the cursor, scrolling the screen, and perhaps a limited number of colors,
usually 8 or 16.

Unix Users’s Guide 17 / 177

Hardware terminals lost popularity with the advent of cheap personal computers, which can perform the functions of a terminal,
as well as running programs of their own. Terminals have been largely replaced by terminal emulators. A terminal emulator is a
simple program that emulates an old style terminal within a window on your desktop.

A Terminal emulator.
All Unix systems come with a terminal emulator program. There are also free terminal emulators for Windows, which are
discussed in Section 1.5.

For purists who really want to emulate a terminal, there’s Cool Retro Terminal (CRT for short, which also happens to stand
for cathode ray tube). This emulator comes complete with screen distortion and jitter to provide a genuine nostalgic 1970s
experience.

Cool Retro Terminal

Unix Users’s Guide 18 / 177

1.3.5 Basic Shell Use

Once you’re logged in and have a shell running in your terminal window, you’re ready to start entering Unix commands.

The shell displays a shell prompt, such as "FreeBSD coral.acadix bacon ~ 1011:" in the image above, to indicate that it’s waiting
for you to enter the next command. The shell prompt can be customized by each user, so it may be different on each Unix system
you use.

Note
For clarity, we primarily use the following to indicate a shell prompt in this text:

shell-prompt:

To enter a Unix command, you type the command on a single line, edit if necessary (using arrow keys to move around), and press
Enter or Return.

We can also enter multiple Unix commands on the same line separated by semicolons.

Modern Unix shells allow commands to be extensively edited. Assuming your terminal type is properly identified by the Unix
system, you can use the left and right arrow keys to move around, backspace and delete to remove characters (Ctrl+h serves as a
backspace in some cases), and other key combinations to remove words, the rest of the line, etc. Learning the editing capabilities
of your shell will make you a much faster Unix user, so it’s a great investment of a small amount of time.

If you have access to a Unix system now, do the practice break below. This practice break is offered again in Section 1.5 for
those who will be using a remote Unix system.

Unix Users’s Guide 19 / 177

Practice Break
Remotely log into another Unix system using the ssh command or PuTTY, or open a shell on your Mac or other Unix system.
Then try the commands shown below.
Unix commands are preceded by the shell prompt "shell-prompt: ". Other text below refers to input to the program (command)
currently running. You must exit that program before running another Unix command.
Lines beginning with ’#’ are comments, and not to be types.

List files in the current working directory (folder)
shell-prompt: ls
shell-prompt: ls -al

Two commands on the same line
shell-prompt: ls; ls /etc

List files in the root directory
shell-prompt: ls /

List commands in the /bin directory
shell-prompt: ls /bin

Create a subdirectory
shell-prompt: mkdir -p Data/IRC

Change the current working directory to the new subdirectory
shell-prompt: cd Data/IRC

Print the current working directory
shell-prompt: pwd

See if the nano editor is installed
nano is a simple text editor (like Notepad on Windows)
shell-prompt: which nano

If this does not report "command not found", then do the following:

Try the nano editor
shell-prompt: nano sample.txt

Type in the following text:

This is a text file called sample.txt.
I created it using the nano text editor on Unix.

Then save the file (press Ctrl+o), and exit nano (press Ctrl+x).
You should now be back at the Unix shell prompt.

Try the "vi" editor
vi is standard editor on all Unix system. It is more complex than nano.
shell-prompt: vi sample.txt

Type ’i’ to go into insert mode
Type in some text
Type Esc to exit insert mode and go back to command mode
Type :w to save
Type :q to quit

shell-prompt: ls

Echo (concatenate) the contents of the new file to the terminal
shell-prompt: cat sample.txt

Count lines, words, and characters in the file
shell-prompt: wc sample.txt

Change the current working directory to your home directory
shell-prompt: cd
shell-prompt: pwd

Show your login name
shell-prompt: id -un

Show the name of the Unix system
shell-prompt: hostname

Show operating system and hardware info
shell-prompt: uname -a

Today’s date
shell-prompt: date

Display a simple calendar
shell-prompt: cal
shell-prompt: cal nov 2018

Simple math with unlimited precision
shell-prompt: bc -l
scale=50
sqrt(2)
8^2
2^8
a=1
b=2
c=1
(-b+sqrt(b^2-4*a*c))/2*a
2*a
quit

Show who is logged in and what they are running
shell-prompt: w
shell-prompt: finger

Exit the shell (which logs you out from an ssh session)
This can also be done by typing Ctrl+d, which is the ASCII/ISO
character for EOT (end of transmission)
shell-prompt: exit

Unix Users’s Guide 20 / 177

1.3.6 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What is a UI?

2. What is a GUI?

3. What is the difference between Unix and other operating systems with respect to the GUI?

4. How is Unix + X11 different from remote desktop systems and terminal servers?

5. What is a virtual desktop?

6. What are the two basic types of user interfaces? Which type is a GUI?

7. What is a CLI?

8. What types of applications are better suited for a menu-driven interface? Why?

9. What types of applications are better suited for a command-driven interface?

10. Which is easier to automate, a menu-driven system or a CLI? Why?

11. How many scientific programs offer a menu-driven interface? Why?

12. What is a shell?

13. What is a kernel?

14. What are libraries? What kinds of functionality do they provide?

Unix Users’s Guide 21 / 177

15. What is a terminal?

16. What is a terminal emulator?

17. Do people still use hardware terminals today? Explain.

18. What is a shell prompt?

1.4 Still Need Windows? Don’t Panic!

For those who need to run software that is only available for Windows, or those who simply haven’t tried anything else yet, there
are options for getting to know Unix while still using Windows for your daily work.

One option is to remotely log into a Unix system using a terminal application such as PuTTY on your Windows machine.

There are virtual machines (see Chapter 7) that allow us to run Windows and Unix on the same computer, at the same time. This
is the best option for those who need a fully functional Unix environment on a Windows machine.

There are also compatibility layers such as Cygwin and Windows Subsystem for Linux (WSL), that allow Unix software to be
compiled and run on Windows. A compatibility layer is generally easier to install, but as of this writing, both Cygwin and WSL
have performance limitations in some areas. Purely computational software will run about as fast as it would on a real Unix
system, but software that performs a lot of file input/output or other system calls can be much slower than a real Unix system,
even one running in a virtual machine.

For example, installing the pkgsrc package manager from scratch, which involves running many Unix scripts and programs,
required the times shown in Table 1.2. WSL, Cygwin, and the Hyper-V virtual machine were all run on the same Windows 10
host with a 2.6 GHz Core i7 processor and 4 GiB RAM. The native FreeBSD and Linux builds were run on identical 3.0 GHz
Xeon servers with 16 GiB RAM, much older than the Core i7 Windows machine.

Platform Time
WSL 104 minutes
Cygwin 71 minutes
FreeBSD Virtual Machine under Hyper-V 21 minutes
CentOS Linux (3.0 GHz Xeon) 6 minutes, 16 seconds
FreeBSD (3.0 GHz Xeon) 5 minutes, 57 seconds

Table 1.2: Pkgsrc Build Times

I highly recommend Cygwin as a light-duty Unix environment under Windows, for connecting to other Unix systems or devel-
oping small Unix programs. For serious Unix development or heavy computation, obtaining a real Unix system, even under a
virtual machine, will produce better results.

1.4.1 Cygwin: Try This First

Cygwin is a free collection of Unix software, including many system tools from Linux and other Unix-compatible systems,
ported to Windows. It can be installed on any typical Windows machine in about 10 minutes and allows users to experience a
Unix user interface as well as run many popular Unix programs right on the Windows desktop.

Cygwin is a compatibility layer, another layer of software on top of Windows that translates the Unix API to the Windows
API. As such, performance is not as good as a native Unix system on the same hardware, but it’s more than adequate for many
purposes. Cygwin may not be ideal for heavy-duty data analysis where optimal performance is required, but it is an excellent
system for basic development and testing of Unix code and for interfacing with other Unix systems.

Cygwin won’t break your Windows configuration, since it is completely self-contained in its own directory. Given that it’s so
easy to install and free of risk, there’s no point wasting time wondering whether you should use Cygwin, a virtual machine, or
some other method to get a Unix environment on your Windows PC. Try Cygwin first and if it fails to meet your needs, try
something else.

Installing Cygwin is quick and easy:

Unix Users’s Guide 22 / 177

1. Download setup-x86_64.exe from https://www.cygwin.com and save a copy on your desktop or some other convenient
location. You will need this program to install additional packages in the future.

2. Run setup-x86_64.exe and follow the instructions on the screen.

Unless you know what you’re doing, accept the default answers to most questions. Some exceptions are noted below.

https://www.cygwin.com/

Unix Users’s Guide 23 / 177

3. Unless you know what you’re doing, simply choose "Install from Internet".

4. Select where you want to install the Cygwin files and whether to install for all users of this Windows machine.

Unix Users’s Guide 24 / 177

5. Select where to save downloaded packages. Again, the default location should work for most users.

6. Select a network connection type.

Unix Users’s Guide 25 / 177

7. Select a download site. It is very important here to select a site near you. Choosing a site far away can cause downloads
to be incredibly slow. You may have to search the web to determine the location of each URL. This information is
unfortunately not presented by the setup utility.

8. When you reach the package selection screen, select at least the following packages in addition to the basic installation:

Unix Users’s Guide 26 / 177

• net/openssh

• net/rsync

• x11/xhost

• x11/xinit

This will install the ssh command as well as an X11 server, which will allow you to run graphical Unix programs on your
Windows desktop. You may not need graphical capabilities immediately, but they will likely come in handy down the road.

The rsync package is especially useful if you’ll be transferring large amounts of data back and forth between your Windows
machine and remote servers.

Click on the package categories displayed in order to expand them and see the packages under them.

Unix Users’s Guide 27 / 177

Cygwin can also enable you to do Unix program development on your Windows machine. There are many packages
providing Unix development tools such as compilers and editors, as well as libraries. The following is a small sample of
common development packages:

Note
Many of these programs are easier to install and update than their counterparts with a standard Windows interface.
By running them under Cygwin, you are also practicing use of the Unix interface, which will make things easy for you
when need to run them on a cluster or other Unix host that is more powerful than your PC.

• devel/clang (C/C++/ObjC compiler)

• devel/clang-analyzer (Development and debugging tool)

• devel/gcc-core (GNU Compiler Collection C compiler)

• devel/gcc-g++

• devel/gcc-gfortran

• devel/make (GNU make utility)

• editors/emacs (Text editor)

• editors/gvim (Text editor)

• editors/nano (Text editor)

• libs/openmpi (Distributed parallel programming tools)

• math/libopenblas (Basic Linear Algebra System libraries)

• math/lapack (Linear Algebra PACKage libraries)

• math/octave (Open source linear algebra system compatible with Matlab(r))

• math/R (Open source statistical language)

Unix Users’s Guide 28 / 177

9. Most users will want to accept the default action of adding an icon to their desktop and to the Windows Start menu.

When the installation is complete, you will find Cygwin and Cygwin/X folders in your Windows program menu.

For a basic Terminal emulator, just run the Cygwin terminal:

Unix Users’s Guide 29 / 177

If you’d like to change the font size or colors of the Cygwin terminal emulator, just right-click on the title bar of the window:

Unix Users’s Guide 30 / 177

Within the Cygwin terminal window, you are now running a "bash" Unix shell and can run most common Unix commands such
as "ls", "pwd", etc.

If you selected the openssh package during the Cygwin installation, you can now remotely log into other Unix machines, such as
the clusters, over the network:

Unix Users’s Guide 31 / 177

Note If you forgot to select the openssh package, just run the Cygwin setup program again. The packages you select when
running it again will be added to your current installation.

If you want to run Unix graphical applications, either on your Windows machine or on a remote Unix system, run the Cygwin/X
application:

Unix Users’s Guide 32 / 177

Note Doing graphics over a network may require a fast connection. If you are logging in from home or over a wireless connec-
tion, you may experience very sluggish rendering of windows from the remote host.

Depending on your Cygwin setup, this might automatically open a terminal emulator called "xterm", which is essentially the
same as the standard Cygwin terminal, although it has a different appearance. You can use it to run all the same commands you
would in the standard Cygwin terminal, including ssh. You may need to use the -X or -Y flag with ssh to enable some remote
graphical programs.

Unlike Cygwin Terminal, the xterm supplied with Cygwin/X is preconfigured to support graphical applications. See Sec-
tion 1.19.2 for details.

Unix Users’s Guide 33 / 177

Caution Use of the -X and -Y flags could compromise the security of your Windows system by allowing malicious
programs on the remote host to display phony windows on your PC. Use them only when logging into a trusted host.

Once you are logged into the remote host from the Cygwin/X xterm, you should be able to run graphical Unix programs.

Unix Users’s Guide 34 / 177

You can also run graphical applications from the standard Cygwin terminal if you update your start up script. If you are using
bash (the Cygwin default shell), add the following line to your .bashrc file:

export DISPLAY=unix:0.0

You will need to run source .bashrc or restart your bash shell after making this change.

If you are using T-shell, the line should read as follows in your .cshrc or .tcshrc:

setenv DISPLAY unix:0.0

Again, Cygwin is not the ideal way to run Unix programs on or from a Windows machine, but it is a very quick and easy way
to gain access to a basic Unix environment and many Unix tools. Subsequent sections provide information about other options
besides Cygwin for those with more sophisticated needs.

1.4.2 Windows Subsystem for Linux: Another Compatibility Layer

Windows Subsystem for Linux (WSL) is the latest in a chain of Unix compatibility systems provided by Microsoft. It allows
Windows to run a subset of a Linux environment. As of this writing, the user can choose from a few different Linux distributions
such as Ubuntu, Debian, SUSE, or Kali.

Differences from Cygwin:

• WSL runs actual Linux binaries (executables), whereas Cygwin allows the user to compile Unix programs into native Windows
executables. Programs build under WSL can be run on a compatible Linux distribution and vice-versa. They cannot be run
on Windows outside WSL. Programs compiled under Cygwin can in some cases be run under Windows outside Cygwin, but
Cygwin cannot run binaries from a real Linux system. Which one you prefer depends on your specific goals. For many people,
including most of us who just want to develop or run scientific programs, it makes no difference.

• WSL provides direct access to the native package collection of the chosen Linux distribution. For example, WSL users running
the Debian app can install software directly from the Debian project using apt-get, just as they would on a real Debian system.

Unix Users’s Guide 35 / 177

The Debian package collection is much larger than Cygwin’s, so if Cygwin does not have a package for software you need,
WSL might be a good option.

• WSL is a virtual machine, based on Microsoft Hyper-V. It requires a substantial amount of memory and requires that virtual-
ization features are enabled in the PC BIOS. If your Windows installation is running in a virtual machine, you must also have
nested virtualization installed, and WSL performance will suffer.

• Cygwin is an independent open source project, while WSL is a Microsoft product. There are pros and cons to each. Microsoft
could change or even terminate support for WSL, as it has done with previous Unix compatibility products, if it no longer
appears to be in the company’s interest to support it. Support for Cygwin will continue as long as the user community is
willing to contribute.

1.4.3 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. Describe three ways we can use Unix software on a Windows machine.

2. What is the advantage of Cygwin over a virtual machine?

3. What is the risk of using Cygwin?

4. What are two advantages of a virtual machine over Cygwin and WSL? Explain.

5. What is an advantage of Cygwin over WSL?

1.5 Logging In Remotely

Virtually all Unix systems allow users to log in and run programs over a network from other locations. This feature is intrinsic to
Unix systems, and only disabled on certain proprietary or embedded installations. It is possible to use both GUIs and CLIs in this

Unix Users’s Guide 36 / 177

fashion, although GUIs may not work well over slow connections such as a slower home Internet services. Different graphical
programs have vastly different bandwidth demands. Some will work fine over a DSL, cable, or WiFi connection, while others
require a fast wired connection.

The command line interface, on the other hand, works comfortably on even the slowest network connections.

Logging into a Unix CLI from a remote location is usually done using Secure Shell (SSH).

Caution Older protocols such as rlogin, rsh, and telnet, should no longer be used due to their lack of security. These
protocols transport passwords over the Internet in unencrypted form, so people who manage the gateway computers
they pass through can easily read them.

1.5.1 Unix to Unix

If you want to remotely log in from one Unix system to another, you can simply use the ssh command from the command line.
The general syntax of the ssh command is:

ssh [flags] login-id@hostname

The login-id portion is your login name on the remote host. If you are logging into a campus-managed server, this is likely the
same campus login ID used to log into other services such as VPN, email, Canvas, etc.

The first time you connect to each remote host, you will be asked to verify that you trust it. You must enter the full word "yes" to
continue:

The authenticity of host ’unixdev1.ceas.uwm.edu (129.89.25.223)’ can’t be established.
ED25519 key fingerprint is SHA256:askjdkj2ksjfdfamnmnmw5lka7jdkjka,mksjdkssfj.
No matching host key fingerprint found in DNS.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

If the connection is successful, you will be asked for your password. Note that nothing will echo to your screen as you type the
password. Login panels that echo a ’*’ or a dot for each character are less secure, since someone looking over your shoulder can
see exactly how long your password is. Knowing the length reduces the parameter space they would have to search in order to
guess the password.

If you plan to run graphical programs on the remote Unix system, you may need to include the -X (enable X11 forwarding) or
-Y (enable trusted X11 forwarding) flag in your ssh command. Run man ssh for full details.

Caution Use -X or -Y only when connecting to trusted computers, i.e. those managed by you or someone you trust.
These options allow the remote system to access your display, which can pose a security risk. For example, a hacker
on the remote system could display a fake login panel on your screen in order to steal your login and password.

Caution Only ssh should be used to log into remote systems. Older commands such as rsh and telnet lack encryption
and are not secure. If anyone tells you to use rsh or telnet, they should not be trusted regarding any computing issues.

Examples:

shell-prompt: ssh joe@unixdev1.ceas.uwm.edu

Unix Users’s Guide 37 / 177

Note For licensing reasons, ssh may not be included in basic Linux installations, but it can be very easily added via the package
management system of most Linux distributions.

If you have X11 capabilities and used -X or -Y with your ssh command, you can easily open additional terminals from the
command-line if you know the name of the terminal emulator. Simply type the name of the terminal emulator, followed by
an ’&’ to put it in the background. (See Section 1.18.3 for a full explanation of background jobs.) Some common terminal
emulators are coreterminal, konsole, urxvt, and xterm.

shell-prompt: coreterminal &

1.5.2 Windows to Unix

If you’re connecting to a Unix system from a Windows system, you will need to install some additional software.

Cygwin

The Cygwin Unix-compatibility system is free, quick and easy to install, and equips a Windows computer with most common
Unix commands, including a Unix-style Terminal emulator. Once Cygwin is installed, you can open a Cygwin terminal on your
Windows desktop and use the ssh command as shown above.

The Cygwin installation is very quick and easy and is described in Section 1.4.1.

PuTTY

A more limited method for remotely accessing Unix systems is to install a stand-alone terminal emulator, such as PuTTY,
https://www.chiark.greenend.org.uk/~sgtatham/putty/. PuTTY has a built-in ssh client, and a graphical dialog box for connecting
to a remote machine. For more information, see the PuTTY documentation.

1.5.3 Terminal Types

In rare cases, you may be asked to specify a terminal type when you log in:

TERM=(unknown)

Terminal features such as cursor movement and color changes are triggered by sending special codes (characters or character
combinations called magic sequences) to the terminal. Pressing keys on the terminal sends codes from the terminal to the
computer.

Different types of terminals use different magic sequences. PuTTY and most other terminal emulators emulate an "xterm"
terminal, so if asked, just type the string "xterm" (without the quotes).

If you fail to set the terminal type, some programs such as text editors will not function. They may garble the screen and fail to
recognize special keys such as arrows, page-up, etc.

You can set the terminal type after logging in, but the methods for doing this vary according to which shell you use, so you may
just want to log out and remember to set the terminal type when you log back in.

https://www.cygwin.com/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

Unix Users’s Guide 38 / 177

Practice Break
Remotely log into another Unix system using the ssh command or PuTTY, or open a shell on your Mac or other Unix system.
Then try the commands shown below.
Unix commands are preceded by the shell prompt "shell-prompt: ". Other text below refers to input to the program (command)
currently running. You must exit that program before running another Unix command.
Lines beginning with ’#’ are comments, and not to be types.

List files in the current working directory (folder)
shell-prompt: ls
shell-prompt: ls -al

Two commands on the same line
shell-prompt: ls; ls /etc

List files in the root directory
shell-prompt: ls /

List commands in the /bin directory
shell-prompt: ls /bin

Create a subdirectory
shell-prompt: mkdir -p Data/IRC

Change the current working directory to the new subdirectory
shell-prompt: cd Data/IRC

Print the current working directory
shell-prompt: pwd

See if the nano editor is installed
nano is a simple text editor (like Notepad on Windows)
shell-prompt: which nano

If this does not report "command not found", then do the following:

Try the nano editor
shell-prompt: nano sample.txt

Type in the following text:

This is a text file called sample.txt.
I created it using the nano text editor on Unix.

Then save the file (press Ctrl+o), and exit nano (press Ctrl+x).
You should now be back at the Unix shell prompt.

Try the "vi" editor
vi is standard editor on all Unix system. It is more complex than nano.
shell-prompt: vi sample.txt

Type ’i’ to go into insert mode
Type in some text
Type Esc to exit insert mode and go back to command mode
Type :w to save
Type :q to quit

shell-prompt: ls

Echo (concatenate) the contents of the new file to the terminal
shell-prompt: cat sample.txt

Count lines, words, and characters in the file
shell-prompt: wc sample.txt

Change the current working directory to your home directory
shell-prompt: cd
shell-prompt: pwd

Show your login name
shell-prompt: id -un

Show the name of the Unix system
shell-prompt: hostname

Show operating system and hardware info
shell-prompt: uname -a

Today’s date
shell-prompt: date

Display a simple calendar
shell-prompt: cal
shell-prompt: cal nov 2018

Simple math with unlimited precision
shell-prompt: bc -l
scale=50
sqrt(2)
8^2
2^8
a=1
b=2
c=1
(-b+sqrt(b^2-4*a*c))/2*a
2*a
quit

Show who is logged in and what they are running
shell-prompt: w
shell-prompt: finger

Exit the shell (which logs you out from an ssh session)
This can also be done by typing Ctrl+d, which is the ASCII/ISO
character for EOT (end of transmission)
shell-prompt: exit

Unix Users’s Guide 39 / 177

1.5.4 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What must be added to Unix to allow remote access?

2. Can we run graphical programs on remote Unix systems? Elaborate.

3. Does the CLI require a fast connection for remote operation?

4. What command would you use to log into a remote system with host name "myserver.mydomain.edu" using the user name
"joe", assuming you want to run a graphical X11 application?

5. What should you do if someone advises you to use rsh or telnet?

6. How can Windows users add an ssh command like the one used on Unix systems?

7. What is the purpose of the TERM environment variable? What will happen if it is not set correctly?

1.6 Unix Command Basics

A Unix command is built from a command name and optionally one or more command line arguments. Arguments can be either
flags or data.

ls -a -l /etc /var
^^ ^^^^^ ^^^^^^^^^
| | |
| | Data Arguments
| Flags
Command name

Unix Users’s Guide 40 / 177

• The command name is either the filename of a program or a command built into the shell. For example, the ls command is a
program that lists the contents of a directory. The cd command is part of the shell.

• Most commands have optional flags (sometimes called options) that control the behavior of the command. By convention,
flags begin with a ’-’ character.

Note Unix systems do not enforce this, but very few commands violate it. Unix programmers tend to understand the benefits
of conventions and don’t have to be coerced to follow them.

The flags in the example above have the following meaning:

-a: tells ls to show "hidden" files (files whose names begin with ’.’, which ls would not normally list).

-l: tells ls to do a "long listing", which is to show lots of information about each file and directory instead of just the name.

Single-letter flags can usually be combined, e.g. -a -l can be abbreviated as -al.

Most newer Unix commands also support long flag names, mainly to improve readability of commands used in scripts. For
example, in the Unix zip command, -C and --preserve-case are synonymous. Using -C saves typing, but --preserve-case
is more easily understood.

• Many commands also accept one or more data arguments, which provide input data to the command, or instruct it where to
send output. Such arguments may be the actual input data or they may be the names of files or directories that contain input or
receive output. The /etc and /var arguments above are directories to be listed by ls. If no data arguments are given to ls, it
lists the current working directory (described in Section 1.8).

For many Unix commands, the flags must come before the data arguments. A few commands require that certain flags appear in
a specific order. Some commands allow flags and data arguments to appear in any order. Unix systems do not enforce any rules
regarding arguments. How they behave is entirely up to the programmer writing the command. However, the vast majority of
commands follow conventions, so there is a great deal of consistency in Unix command syntax.

The components of a Unix command are separated by white space (space or tab characters). Hence, if an argument contains any
white space, it must be enclosed in quotes (single or double) so that it will not be interpreted as multiple separate arguments.

Example 1.1 White space in an Argument
Suppose you have a directory called My Programs, and you want to see what’s in it. You might try the following:

shell-prompt: ls My Programs

The above command fails because "My" and "Programs" are interpreted as two separate arguments. The ls command will look
for two separate files or directories called "My" and "Programs". In this case, we must use quotes to bind the parts of the directory
name together into a single argument. Either single or double quotes are accepted by all common Unix shells. The difference
between single and double quotes is covered in Chapter 2.

shell-prompt: ls ’My Programs’
shell-prompt: ls "My Programs"

As an alternative to using quotes, we can escape the space by preceding it with a backslash (’\’) character. This will save one
keystroke if there is only one character to be escaped in the text.

shell-prompt: ls My\ Programs

Unix Users’s Guide 41 / 177

Practice Break
Try the following commands:

shell-prompt: ls
shell-prompt: ls -al
shell-prompt: ls /etc
shell-prompt: ls -al /etc
shell-prompt: mkdir My Programs
shell-prompt: ls
shell-prompt: rmdir My
shell-prompt: rmdir Programs
shell-prompt: mkdir ’My Programs’
shell-prompt: ls
shell-prompt: ls My Programs
shell-prompt: ls "My Programs"

1.6.1 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What are the three major components of a Unix command?

2. What are the two sources of the command name?

3. How do we know whether an argument is a flag or data?

4. What is the advantage of short flags and the advantage of long flags?

5. What do data argument represent?

6. What rules does Unix enforce regarding the order of arguments?

Unix Users’s Guide 42 / 177

7. What separates one Unix argument from the next?

8. Can an argument contain whitespace? If so, how?

1.7 Basic Shell Tools

1.7.1 Common Unix Shells

There are many different shells available for Unix systems. This might sound daunting if you’re new to Unix, but fortunately,
like most Unix tools, all the common shells adhere to certain standards. All of the common shells are derived from one of two
early ancestors:

• Bourne shell (sh) is the de facto basic shell on all Unix systems, and is derived from the original Unix shell developed at AT&T.

• C shell (csh) offers mostly the same features as Bourne shell, but the two differ in the syntax of their scripting languages, which
are discussed in Chapter 2. The C shell syntax is designed to be more intuitive and similar to the C language.

Most Unix commands are exactly the same regardless of which shell you are using. Differences will only become apparent when
using more advanced command features or writing shell scripts, both of which we will cover later.

Common shells derived from Bourne shell include the following:

• Almquist shell (ash), used as the Bourne shell on some BSD systems.

• Korn shell (ksh), an extended Bourne shell with many added features for user-friendliness.

• Bourne again shell (bash) another extended Bourne shell from the GNU project with many added features for user-friendliness.
Used as the Bourne shell on some Linux systems.

• Debian Almquist shell (dash), a reincarnation of ash which is used as the Bourne shell on Debian based Linux systems.

Common shells derived from C shell include the following:

• T shell (tcsh), and extended C shell with many added features for user-friendliness.

• Hamilton C shell, an extended C shell used primarily on Microsoft Windows.

Unix systems differ in which shells are included in the base installation, but most shells can be easily added to any Unix system
using the system’s package manager.

1.7.2 Command History

Most shells remember a configurable number of recent commands. This command history is saved both in memory and to disk,
so that you can still recall this session’s commands next time you log in. The exact mechanisms for recalling those commands
varies from shell to shell, but some of the features common to all shells are described below.

Most modern shells support scrolling through recent commands by using the up-arrow and down-arrow keys. Only very early
shells like lack this capability.

Note This feature may not work if your TERM variable is not set properly, since the arrow keys send magic sequences that may
differ among terminal types.

The history command lists the commands that the shell currently has in memory.

Unix Users’s Guide 43 / 177

shell-prompt: history

A command consisting of an exclamation point (!) followed by any character string causes the shell to search for the most recently
executed command that began with that string. This is particularly useful when you want to repeat a complicated command.

shell-prompt: find Programs -name ’*.o’ -exec rm -i ’{}’ \;
shell-prompt: !find

An exclamation point followed by a number runs the command with that history index:

shell-prompt: history
385 13;42 more output.txt
386 13:54 ls
387 13:54 cat /etc/hosts

shell-prompt: !386
ls
Avi-admin/ Materials-Studio/ iperf-bsd
Backup@ New-cluster/ notes
Books/ Peregrine-admin/ octave-workspace

Tantalizing sneak preview: We can check the history for a particular pattern such as "find" as follows:

shell-prompt: history | grep find

More on the "| find" in Section 1.13.

1.7.3 Auto-completion

In most Unix shells, you need only type enough of a command or argument filename to uniquely identify it. At that point,
pressing the TAB key will automatically fill in the rest for you. Try the following:

shell-prompt: touch sample.txt
shell-prompt: cat sam<Press the TAB key now>

If there are other files in your directory that begin with "sam", you may need to type a few additional characters before the TAB,
like ’p’ and ’l’ before auto-completion will work.

1.7.4 Command-line Editing

Modern shells allow extensive editing of the command currently being entered. The key bindings for different editing features
depend on the shell you are using and the current settings. Some shells offer a selection of different key bindings that correspond
to Unix editors such as vi or Emacs.

See the documentation for your shell for full details. Below are some example default key bindings for shells such as bash and
tcsh.

Key Action
Left arrow Move left
Right arrow Move right
Ctrl+a Beginning of line
Ctrl+e End of line
Backspace or Ctrl+h Delete left
Ctrl+d Delete current

Table 1.3: Default Key Bindings in some Shells

Unix Users’s Guide 44 / 177

1.7.5 Globbing (File Specifications)

There is often a need to specify a large number of files as command line arguments. Typing all of them would be tedious, so
Unix shells provide a mechanism called globbing that allows short, simple patterns to match many file names. This allows us to
type a brief specification that represents a large number (a glob) of files.

These patterns are built from literal text and/or special symbols called wild cards as shown in Table 1.4.

Symbol Matches

* Any sequence of characters (including none) except a ’.’ in
the first character of the filename.

? Any single character, except a ’.’ in the first character of
the filename.

[string] Any character in string
[c1-c2] Any character from c1 to c2, inclusive
{thing1,thing2} Thing1 or thing2

Table 1.4: Globbing Symbols

Normally, the shell handles these special characters, expanding globbing patterns to a list of matching file names before the
command is executed.

If you want an argument containing special globbing characters to be sent to a command in its raw form, it must be enclosed in
quotes, or each special character must be escaped (preceded by a backslash, \).

Certain commands, such as find need to receive the pattern as an argument and attempt to do the matching themselves rather
than have it done for them by the shell. Therefore, patterns to be used by the find command must be enclosed in quotes.

shell-prompt: ls *.txt # Lists all files ending in ".txt"
shell-prompt: ls "*.txt" # Fails, unless there is a file called ’*.txt’
shell-prompt: ls ’*.txt’ # Fails, unless there is a file called ’*.txt’
shell-prompt: ls .*.txt # Lists hidden files ending in ".txt"
shell-prompt: ls [A-Za-z]* # Lists all files and directories

whose name begins with a letter
shell-prompt: find . -name *.txt # Fails
shell-prompt: find . -name ’*.txt’ # List .txt files in all subdirectories
shell-prompt: ls *.{c,c++,f90}

Caution The exact behavior of character ranges such as [A-Z] may be affected by locale environment variables such
as LANG, LC_COLLATE, and LC_ALL. See Section 1.16 for general information about the environment. Information
about locale and collation can be found online. Behavior depends on these settings as well as which Unix shell you are
using and the shell’s configuration settings. Setting LANG and the LC_ variables to C or C.UTF-8 will usually ensure
the behavior described above.

Unix Users’s Guide 45 / 177

1.7.6 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What is the de facto standard shell on Unix systems?

2. How do most Unix commands differ when run under one shell such as C shell as opposed to running under another such
as Bourne shell or Bourne again shell?

3. What if a shell we like or need is not present on our Unix installation?

4. How can we quickly rerun the previous command in most Unix shells?

5. How can we list all recent commands executed from this shell?

6. How can we run the last command that began with "ls"?

7. Given the shell history shown below, how can we run the last command used to log into unixdev1?

984 16:48 vi .ssh/known_hosts
985 16:50 ssh -X bacon@unixdev1.ceas.uwm.edu
986 16:52 ssh -X -C bacon@unixdev1.ceas.uwm.edu
987 16:58 ape
988 16:59 ssh -X -C bacon@unixdev1.ceas.uwm.edu

8. How can we avoid typing a long file name or command name in most shells?

9. How can we instantly move to the beginning of the command we are currently typing?

10. How do we list all the non-hidden files in the current directory ending in ".txt"?

11. How do we list all the hidden files in the current directory ending in ".txt"?

12. How do we list all the files in /etc beginning with "hosts"?

Unix Users’s Guide 46 / 177

13. How do we list all the files in the current directory starting with a lower case letter and ending in ".txt"?

14. How do we list all the files in the current directory starting with any letter and ending in ".txt"?

15. How do we list all the non-hidden files in the current directory ending with ".pdf" or ".txt"?

16. How do we list all the files in /etc and all other directories under /etc with names ending in ".conf"?

17. When are globbing patterns normally expanded to a list of files?

18. How can we include a file name in a command if the file name contains a special character such as ’*’ or ’[’?

1.8 Processes

A program is a file containing statements or commands in the form of source code or machine code. A process, in Unix
terminology, is the execution of a program. By this we mean the running of a program, not a blindfold, a cigarette, and firing
squad. A program is an object. A process is an action utilizing that object. A grocery list is like a program. A trip to the grocery
store to buy what is on the list is like a process.

Unix is a multitasking system, which means that many processes can be running at any given moment, i.e. there can be many
active processes.

When you log in, the system creates a new process to run your shell program. The same happens when other people log in.
Hence, while everyone may be using the same shell program, they are all running different shell processes.

When you run a program (a command) from the shell, the shell creates a new process to run the program. Hence, you now have
two processes running: the shell process and the command’s process. The shell then normally waits for that child process to
complete before printing the shell prompt again and accepting another command.

The process created by the shell to run your command is called a child process of the shell process. Naturally, the shell process
is then called the parent process of the command process.

Each process is uniquely identified by an integer serial number called the process ID, or PID.

Unix systems also keep track of each process’s status and resource usage, such as memory, CPU time, etc. Information about
your currently running processes can be viewed using the ps (process status) command:

shell-prompt: ps
PID TTY TIME CMD

7147 ttys000 0:00.14 -tcsh
7438 ttys000 0:01.13 ape notes.dbk unix.dbk
7736 ttys001 0:00.13 -tcsh

Practice Break
Run the ps command. What processes do you have running?

shell-prompt: ps

What if we want to see all the processes on the system, instead of just our own? On most systems, we can add the -a (include
other peoples’ processes) and -x (include processes not started from a terminal) flags.

shell-prompt: ps -ax

Another useful tool is the top command, which monitors all processes in a system and displays system statistics and the top
(most active) processes every few seconds. Note that since top is a full-terminal command, it will not function properly unless
the TERM environment variable is set correctly.

Unix Users’s Guide 47 / 177

Practice Break
Run the top command. What processes are using the most CPU time? Type ’q’ to quit top.

shell-prompt: top

1.8.1 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. How does a process differ from a program?

2. If 10 people are logged in and using the same Unix shell, how many shell programs are there? How many shell processes?

3. What normally happens when you run a program from the shell?

4. How are processes identified in Unix?

5. How can we list all the processes currently running on the system?

6. How can we monitor which processes are using the most CPU and memory resources?

1.9 The Unix File System

1.9.1 Unix Files

A Unix file is simply a sequence of bytes (8-bit values) stored on a disk and given a unique name. The bytes in a file may be
printable characters such as letters, digits, punctuation symbols, invisible control characters (which cause a printer or terminal

Unix Users’s Guide 48 / 177

to perform actions such as backspacing or scrolling), part of a number (a typical integer or floating point number consists of 8
bytes), or other non-character, non-numeric data.

This is how Unix sees all files. It takes no interest whatsoever in the meaning of the bytes within a file. The meaning of the
content is determined solely by the programs using the file.

Text vs Binary Files

Files are often classified as either text or binary files. All of the bytes in a text file are interpreted as ASCII/ISO characters by the
programs that read or write the file, while binary files may contain both character and non-character data.

Again, Unix does not make a distinction between text and binary files. This is left to the programs that use the files.

Practice Break
Try the following commands:

shell-prompt: cat /etc/hosts

What do you see? The /etc/hosts file is a text file, and cat is used here to echo (concatenate) it to the terminal output.
Now try the following:

shell-prompt: cat /bin/ls

What do you see? The file /bin/ls is not a text file. It contains binary program code, not characters. The cat command
assumes that the file is a text file and sends each byte to your terminal. The terminal tries to interpret each byte as an ASCII/ISO
character and display it on the screen. Since the file does not contain a sequence of characters, it appears as nonsense on
your terminal. Some of the bytes sent to the terminal may even knock it out of whack, causing it to behave strangely. If this
happens, run the reset command to restore your terminal to its default state.

Unix vs. Windows Text Files

While it is the programs that interpret the contents of a file, there are some conventions regarding text file format that all Unix
programs follow, so that they can all manipulate the same files. Unfortunately, Windows programs follow different conventions.
Unix programs assume that text files terminate each line with a control character known as a line feed (also known as a newline
or NL for short), which is the 10th character in the standard ASCII/ISO character sets. Windows programs use both a carriage
return or CR (13th character) and NL.

Text files created on Windows will contain both a CR and NL at the end of each line. Text files created on Unix will have only
an NL. This can cause problems for programs on either Unix or Windows. Hence, it is not a good idea to use a Windows editor
to write code for Unix systems or vice-versa.

The dos2unix and unix2dos commands can be used to clean up files that have been transferred between Unix and Windows.
These programs convert text files between the Windows and Unix standards. If you’ve edited a text file on a non-Unix system,
and are now using it on a Unix system, you can clean it up by running:

shell-prompt: dos2unix filename

The dos2unix and unix2dos commands are not standard with most Unix systems, but they are free programs that can easily be
added via most package managers.

Caution Note that dos2unix and unix2dos should only be used on text files. They should never be used on binary
files, since the contents of a binary file are not meant to be interpreted as characters such as line feeds and carriage
returns.

Unix Users’s Guide 49 / 177

1.9.2 File system Organization

Basic Concepts

A Unix file system contains files and directories. A file is like a document, and a directory is like a folder that contains documents
and/or other directories. The terms "directory" and "folder" are interchangeable, but "directory" is the standard term used in Unix.

Directories are so called because they serve the same purpose as the directory you might find in the lobby of an office building:
They are listings that keep track of what files and other directories are called and where they are located on the disk.

Note
Unix file systems use case-sensitive file and directory names. I.e., Temp is not the same as temp, and both can coexist in the
same directory.
Mac OS X is the only mainstream Unix system that violates this convention. The standard OS X file systems is case-preserving,
but not case-sensitive. This means that if you call a file Temp, it will remember that the T is capital, but it can also be referred
to as temp, tEmp, etc. Only one of these files can exist in a given directory at any one time.

A Unix file system can be visualized as a tree, with each file and directory contained within another directory. Figure 1.2 shows a
small portion of a typical Unix file system. On a real Unix system, there are usually thousands of files and directories. Directories
are shown in green and files are in yellow.

Figure 1.2: Sample of a Unix File system

Unix uses a forward slash (/) to separate directory and file names while Windows uses a backslash (\).

The one directory that is not contained within any other is known as the root directory, whose name under Unix is /. There
is exactly one root directory on every Unix system. Windows systems, on the other hand, have a root directory for each disk
partition such as C:\ and D:\.

The Cygwin compatibility layer works around the separate drive letters of Windows by unifying them under a common parent
directory called /cygdrive. Hence, for Unix commands run under Cygwin, /cygdrive/c is equivalent to c:\, /cygdrive/d is equivalent
to d:\, and so on. This allows Cygwin users to do things like search multiple Windows drive letters with a single command starting
in /cygdrive.

Unix file system trees are fairly standardized, but most have some variation. For instance, all Unix systems have a /bin and
a /usr/bin, which contain standard Unix commands. Not all of them have /home or /usr/local. Many Linux systems install
commands from add-on packages into /usr/bin, mixing them with the standard Unix commands that are essential to the basic
functioning of the system. Other systems such as most BSDs keep them separated in /usr/local/bin or /usr/pkg/bin.

The root directory is the parent of /bin and /home and an ancestor of all other files and directories.

The /bin and /home directories are subdirectories, or children of /. Likewise, /home/joe and /home/sue are subdirectories of
/home, and grandchildren of /.

Unix Users’s Guide 50 / 177

All of the files in and under /home comprise a subtree of /home.

The children of a directory, all of its children, and so on, are known as descendants of the directory. All files and directories on a
Unix system, except /, are descendants of /.

Each user has a home directory, which can be arbitrarily assigned, but is generally a child of /home on many Unix systems or of
/Users on macOS. Most or all of a user’s files and subdirectories are found under their home directory. In the example above,
/home/joe is the home directory for user joe, and /home/sue is the home directory for user sue.

In some situations, a home directory can be referred to as ~ or ~user. For example, user joe can refer to his home directory as ~,
~/, or ~joe, while he can only refer to sue’s home directory as ~sue.

Absolute Path Names

The absolute path name, also known as full path name, of a file or directory denotes the complete path from / (the root directory)
to the file or directory of interest. For example, the absolute path name of Sue’s .cshrc file is /home/sue/.cshrc, and the absolute
path name of the ape command is /usr/local/bin/ape.

The absolute path name is the only way to uniquely identify a file or directory in the file system.

Note An absolute path name always begins with ’/’ or a ’~’, noting that ’~’ is shorthand for a path that begins with a ’/’ such as
/home/joe or /Users/joe.

Practice Break
Try the following commands:

shell-prompt: ls
shell-prompt: ls /etc
shell-prompt: cat /etc/hosts
shell-prompt: ls ~

Current Working Directory

Every Unix process has an attribute called the current working directory, or CWD. This is the directory that the process is
currently "in". When you first log into a Unix system, the shell process’s CWD is set to your home directory.

Note It is important to understand that the CWD is a property of each process, not of a user or a program.

The pwd command prints the CWD of the shell process. The cd command changes the CWD of the shell process. Running
cd with no arguments sets the CWD to your home directory, much like clicking your heels together three times to get back to
Kansas.

Practice Break
Try the following commands:

shell-prompt: pwd
shell-prompt: cd /
shell-prompt: pwd
shell-prompt: cd
shell-prompt: pwd

Unix Users’s Guide 51 / 177

Many commands, such as ls, use the CWD as a default if you don’t provide a directory name on the command line. For example,
if the CWD is /home/joe, then the following commands are the same:

shell-prompt: ls
shell-prompt: ls /home/joe
shell-prompt: ls ~joe

Relative Path Names

Whereas an absolute path name denotes the path from / to a file or directory, the relative path name denotes the path from the
CWD to a file or directory.

Any path name that does not begin with a ’/’ or ’~’ is interpreted as a relative path name. The absolute path name is then derived
by appending the relative path name to the CWD. For example, if the CWD is /etc, then the relative path name hosts refers
to the absolute path name /etc/hosts.

absolute path name = CWD + "/" + relative path name

Note Since the CWD is a property of each process, a relative path name is not unique. It may have different meaning to
different processes, or different meaning to the same process before and after it changes its CWD. For example the meaning
of the relative path name "bin" depends on whether CWD is / or /usr.

Note Relative path names are handled at the lowest level of the operating system, by the Unix kernel. This means that they
can be used anywhere: in shell commands, in C or Fortran programs, etc.

When you run a program from the shell, the new process inherits the CWD from the shell. Hence, you can use relative path names
as arguments in any Unix command, and they will use the CWD inherited from the shell. For example, the two cat commands
below have the same effect.

shell-prompt: cd /etc # Set shell’s CWD to /etc
shell-prompt: cat hosts # Inherits CWD from shell, so hosts = /etc/hosts
shell-prompt: cat /etc/hosts # Same effect as above

Wasting Time
The cd command is one of the most overused Unix commands. Many people use it where it is completely unnecessary
and actually results in significantly more typing than needed. Don’t use cd where you could have used the directory
with another command. For example, consider the sequence of commands:

shell-prompt: cd /etc
shell-prompt: more hosts
shell-prompt: cd

The same effect could have been achieved much more easily using the following single command:

shell-prompt: more /etc/hosts

Note In almost all cases, absolute path names and relative path names are interchangeable. You can use either type of path
name as a command line argument, or within a program.

Unix Users’s Guide 52 / 177

Practice Break
Try to predict the results of the following commands before running them:

shell-prompt: cd
shell-prompt: pwd
shell-prompt: cd /etc
shell-prompt: pwd
shell-prompt: cat hosts
shell-prompt: cat /etc/hosts
shell-prompt: cd
shell-prompt: pwd
shell-prompt: cat hosts

Why does the last command result in an error?

Avoid Absolute Path Names

The relative path name is potentially much shorter than the equivalent absolute path name. Using relative path names also makes
code more portable.

Suppose you have a project contained in the directory /Users/joe/Thesis on your Mac. Now suppose you want to work on the
same project on a cluster, where there is no /Users directory and you have to store it in /share1/joe/Thesis.

The absolute path name of every file and directory will be different on the cluster than it is on your Mac. This can cause major
problems if you were using absolute path names in your scripts, programs, and makefiles. Statements like the following will have
to be changed in order to run the program on a different computer.

infile = fopen("/Users/joe/Thesis/Inputs/input1.txt", "r");

sort /Users/joe/Thesis/Inputs/names.txt

No program should ever have to altered just to make it run on a different computer. Changes like these are a source of regressions
(new program bugs).

While the absolute path names change when you move the Thesis directory, the path names relative to the Thesis directory remain
the same. For this reason, absolute path names should be avoided unless they are guaranteed to be portable, which is very rare.

The statements below will work on any computer as long as the program or script is running with Thesis as the CWD. It does not
matter where the Thesis directory is located, so long as the Inputs directory is its child.

infile = fopen("Inputs/input1.txt", "r");

sort Inputs/names.txt

Special Directory Names

In addition to absolute path names and relative path names, there are a few special symbols for directories that are commonly
referenced:

Symbol Refers to
. The current working directory
.. The parent of the current working directory
~ Your home directory
~user user’s home directory

Table 1.5: Special Directory Symbols

Unix Users’s Guide 53 / 177

The ’.’ notation for CWD is useful for copying files to CWD and other commands that require a target directory name.

It is also useful if a mishap occurs, leading to the creation of a file whose name begins with a special character such as ’-’ or ’~’.
If we have a file called "-file.txt", we cannot remove it with rm -file.txt, since the rm command with think the ’-’ indicates a flag
argument. To get around this, we simply need to make the argument not begin with a ’-’. We can either use the absolute path
name of the file, e.g. /home/joe/-file.txt or ./-file.txt.

Practice Break
Try the following commands and see what they do:

shell-prompt: cd
shell-prompt: pwd
shell-prompt: ls
shell-prompt: ls ~
shell-prompt: ls .
shell-prompt: mkdir Data Scripts
shell-prompt: cp /etc/hosts .
shell-prompt: mv hosts Data
shell-prompt: ls Data
shell-prompt: cd Data
shell-prompt: cd ../Scripts
shell-prompt: ls ..
shell-prompt: ls ../Data
shell-prompt: more ../Data/hosts
shell-prompt: rm ../Data/hosts
shell-prompt: ls ~/Data
shell-prompt: ls /bin
shell-prompt: cd ..
shell-prompt: pwd

1.9.3 Ownership and Permissions

Overview

Every file and directory on a Unix system has inherent access control features based on a simple system:

• Every file and directory belongs to an individual user and to a group of users.

• There are 3 types of permissions which are controlled separately from each other:

– Read
– Write (modify)
– Execute (e.g. run a file if it’s a program)

• Read, write, and execute permissions can be granted or denied separately for each of the following:

– The individual who owns the file (user)
– The group that owns the file (group)
– All other users on the system (a hypothetical group known as "world" (other)

Execute permissions on a file mean that the file can be executed as a script or a program by typing its name. It does not mean
that the file actually contains a script or a program: It is up to the owner of the file to set the execute permissions appropriately
for each file.

Execute permissions on a directory mean that permitted users can cd into it. Users only need read permissions on a directory to
list it or access a file within it, but they need execute permissions in order for their processes to make it the CWD.

Unix systems provide this access using 9 on/off switches (bits) associated with each file.

Unix Users’s Guide 54 / 177

Viewing Permissions

If you do a long listing of a file or directory, you will see the ownership and permissions:

shell-prompt: ls -l
drwx------ 2 joe users 512 Aug 7 07:52 Desktop/
drwxr-x--- 39 joe users 1536 Aug 9 22:21 Documents/
drwxr-xr-x 2 joe users 512 Aug 9 22:25 Downloads/
-rw-r--r-- 1 joe users 82118 Aug 2 09:47 bootcamp.pdf

The leftmost column shows the type of object and the permissions for each user category.

A ’-’ in the leftmost character means a regular file, ’d’ means a directory, ’l’ means a link. etc. Running man ls will reveal all
the codes.

The next three characters are, in order, read, write and execute permissions for the owner (joe).

The next three after that are permissions for members of the owning group (users).

The next three are permissions for world (other).

A ’-’ in a permission bit column means that the permission is denied for that user or set of users and an ’r’, ’w’, or ’x’ means that
read, write, or execute is permitted.

The next three columns show the number of links (different path names for the same file), the individual and group ownership of
the file or directory. The remaining columns show the size, the date and time it was last modified, and name. In addition to the
’d’ in the first column, directory names are followed by a ’/’ if the ls is so configured.

You can see above that Joe’s Desktop directory is readable, writable, and executable for Joe, and completely inaccessible to
everyone else.

Joe’s Documents directory is readable, writable and executable for Joe, and readable and executable for members of the group
"users". Users not in the group "users" cannot access the Documents directory at all.

Joe’s Downloads directory is readable and executable to anyone who can log into the system.

The file bootcamp.pdf is readable by group and world, but only writable by Joe. It is not executable by anyone, which makes
sense because a PDF file is not a program.

Setting Permissions

Users cannot change individual ownership on a file, since this would allow them to subvert disk quotas and do other malicious
acts by placing their files under someone else’s name. Only the superuser (the system administrator) can change the individual
ownership of a file or directory.

Every user has a primary group and may also be a member of supplementary groups. Users can change the group ownership of
a file to any group that they belong to using the chgrp command, which requires a group name as the second argument and one
or more path names following the group:

shell-prompt: chgrp group path [path ...]

All sharing of files on Unix systems is done by controlling group ownership and file permissions.

File permissions are changed using the chmod command:

shell-prompt: chmod permission-specification path [path ...]

The permission specification has a symbolic form, and a raw form, which is an octal number.

The symbolic form consists of any of the three user categories ’u’ (user/owner), ’g’ (group), and ’o’ (other/world) followed by a
’+’ (grant) or ’-’ (revoke), and finally one of the three permissions ’r’, ’w’, or ’x’.

To add read and execute (cd) permissions for group and world on the Documents directory:

shell-prompt: chmod go+rx Documents

Unix Users’s Guide 55 / 177

Sometimes it is impossible to express the changes we want to make in one simple specification. In that case, we can use a
compound specification, two or more basic specs separated by commas. Remember that white space indicates the end of an
argument, so we cannot have any white space next to the comma.

To revoke all permissions for world on the Documents directory and grant read permission for the group:

shell-prompt: chmod o-rwx,g+r Documents

Disable write permission for everyone, including the owner, on bootcamp.pdf. This can be used to prevent the owner from
accidentally deleting an important file.

shell-prompt: chmod ugo-w bootcamp.pdf

Run man chmod for additional information.

The raw form for permissions uses a 3-digit octal number to represent the 9 permission bits. This is a quick and convenient
method for computer nerds who can do octal/binary conversions in their head.

shell-prompt: chmod 644 bootcamp.pdf # 644 = 110100100 = rw-r--r--
shell-prompt: chmod 750 Documents # 750 = 111101000 = rwxr-x---

Caution NEVER make any file or directory world-writable. Doing so allows any other user to modify it, which is a
serious security risk. A malicious user could use this to install a Trojan Horse program under your name, for example.

By default, new files you create are owned by you and your primary group. If you are a member of more than one group and
wish to share a directory with one of your supplementary groups, it may also be helpful to set a special flag on the directory so
that new files created in it will have the same group as the directory, rather than your primary group. Then you won’t have to
remember to chmod every new file you create.

shell-prompt: chmod g+s Shared-research

Practice Break
Try the following commands, and try to predict the output of each ls before you run it.

shell-prompt: touch testfile
shell-prompt: ls -l
shell-prompt: chmod go-rwx testfile
shell-prompt: ls -l
shell-prompt: chmod o+rw testfile
shell-prompt: ls -l
shell-prompt: chmod g+rwx testfile
shell-prompt: ls -l
shell-prompt: rm testfile

Now set permissions on testfile so that it is readable, writable, and executable by you, only readable by the group, and inacces-
sible to everyone else.

Unix Users’s Guide 56 / 177

1.9.4 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What is a file in the viewpoint of Unix?

2. What is the difference between a text file and a binary file?

3. What will happen if you echo a binary file to your terminal?

4. What is the difference between Windows and Unix text files?

5. How can we convert text files between the Unix and Windows standards?

6. What is a directory?

7. What does it mean that Unix filenames are case-sensitive?

8. What is a root directory?

9. How many root directories does a Unix system have? How many does Windows have?

10. What is contained in the /bin and /usr/bin directories?

11. What is a subdirectory?

12. What is a home directory?

13. What is an absolute path name and how do we recognize one?

14. What is the absolute path name of Sue’s asg01.c in the tree diagram in this section?

15. Of what is the CWD a property?

16. How can we find out the CWD of a shell process?

Unix Users’s Guide 57 / 177

17. How can we set the CWD of a shell process to /tmp?

18. How can we set the CWD of a shell process to our home directory?

19. What is a relative path name and how to we recognize one?

20. Is a relative path name unique? Prove your answer with an example.

21. How does Unix determine the absolute path name from a relative path name?

22. If the CWD of a process is /usr/local, what is the absolute path name of "bin/ape"?

23. Where does a new process get its initial CWD?

24. Why should we avoid using absolute path names in programs and scripts?

25. How can we list the contents of the parent directory of CWD?

26. If the CWD of a process is /home/bob/Programs, what is the relative path name of /home/bob/Data/input1.txt?

27. How do we remove a file called "~sue" in the CWD?

28. What are the three user categories that can be granted permissions on a file or directory?

29. What does it mean to set execute permission on a file? On a directory?

30. Given the following ls -l output, who can do what to bootcamp.pdf?

-rw-r----- 1 joe users 82118 Aug 2 09:47 bootcamp.pdf

31. How would we allow users who are not in the owning group to read bootcamp.pdf?

32. How would we allow members of the group to read and execute the program "simulation" and at the same time revoke all
access to other users?

33. How can we make the directory "MyScripts" world writable?

34. How can we change the group ownership of the directory "Research" to the group "smithlab".

35. Assuming your primary group is "joe", how can we configure the directory Research form the previous question so that
new files you create in it will be owned by "smithlab" instead of "joe"?

1.10 Unix Commands and the Shell

Before You Begin You should have a basic understanding of Unix processes, files, and directories. These topics are covered
in Section 1.8 and Section 1.9.

Unix commands fall into one of two categories:

• Internal commands are part of the shell.

No new process is created when you execute an internal command. The shell simply carries out the execution of internal
commands by itself.

• External commands are programs separate from the shell. The command name of an external command is actually the name of
an executable file, i.e. a file containing the program or script. For example, when you run the ls command, you are executing
the program contained in the file /bin/ls.

When you run an external command, the shell locates the program file, loads the program into memory, and creates a new
(child) process to execute the program. The shell then normally waits for the child process to end before prompting you for the
next command.

Unix Users’s Guide 58 / 177

1.10.1 Internal Commands

Commands are implemented internally only when it is necessary or when there is a substantial benefit. If all commands were
part of the shell, the shell would be enormous and require too much memory.

One command that must be internal is the cd command, which changes the CWD of the shell process. The cd command cannot
be implemented as an external command, since the CWD is a property of the process, as described in Section 1.9.2.

We can prove this using Proof by Contradiction. If the cd command were external, it would run as a child process of the shell.
Hence, running cd would create a child process, which would inherit CWD from the shell process, alter its copy of CWD, and
then terminate. The CWD of the parent, the shell process, would be unaffected.

Expecting an external command to change your CWD for you would be akin to asking one of your children to go to take a shower
for you. Neither is capable of affecting the desired change. Likewise, any command that alters the state of the shell process must
be implemented as an internal command.

1.10.2 External Commands

Most commands are external, i.e. programs separate from the shell. As a result, they behave the same way regardless of which
shell we use to run them.

The executable files containing external commands are kept in certain directories, most of which are called bin (short for
"binary", since most executable files are binary files containing machine code). The most essential commands required for the
Unix system to function are kept in /bin and /usr/bin. The location of optional add-on commands varies, but a typical
location is /usr/local/bin. Debian and Redhat Linux mix add-on commands with core system commands in /usr/bin.
BSD systems keep them separate directories such as /usr/local/bin or /usr/pkg/bin.

Practice Break

1. Use which under C shell family shells to find out whether the following commands are internal or external. Use type
under Bourne family shells (bash, ksh, dash, zsh). You can use either command under either shell, but will get better
results if you follow the advice above. (Try both and see what happens.)

shell-prompt: which cd
shell-prompt: which cp
shell-prompt: which exit
shell-prompt: which ls
shell-prompt: which pwd

2. Use ls to find out what commands are located in /bin and /usr/bin.

1.10.3 Getting Help

In the dark ages before Unix, when programmers wanted to look up a command or function, they actually had to get out of their
chairs and walk somewhere to pick up a typically ring-bound printed manual to flip through.

The Unix designers saw the injustice of this situation and set out to rectify it. They imagined a Utopian world where they could
sit in the same chair for ten hours straight without ever taking our eyes off the monitor or their fingers off the keyboard, happily
subsisting on coffee and potato chips.

Aside
If there is one trait that best defines an engineer it is the ability to concentrate on one subject to the complete exclusion of
everything else in the environment. This sometimes causes engineers to be pronounced dead prematurely. Some funeral
homes in high-tech areas have started checking resumes before processing the bodies. Anybody with a degree in electrical
engineering or experience in computer programming is propped up in the lounge for a few days just to see if he or she snaps
out of it.
-- The Engineer Identification Test (Anonymous)

Unix Users’s Guide 59 / 177

And so, online documentation was born. On Unix systems, all common Unix commands are documented in detail on the Unix
system itself, and the documentation is accessible via the command line (you do not need a GUI to view it, which is important
when using a dumb terminal to access a remote system). Whenever you want to know more about a particular Unix command,
you can find out by typing man command-name. For example, to learn all about the ls command, type:

shell-prompt: man ls

The man covers virtually every common command, as well as other topics. It even covers itself:

shell-prompt: man man

The man command displays a nicely formatted document known as a man page. It uses a file viewing program called more,
which can be used to browse through text files very quickly. Table 1.6 shows the most common keystrokes used to navigate a
man page. For complete information on navigation, run:

shell-prompt: man more

Key Action
h Show key commands
Space bar Forward one page
Enter/Return Forward one line
b Back one page
/ Search

Table 1.6: Common hot keys in more

Man pages include a number of standard sections, such as SYNOPSIS, DESCRIPTION, and SEE ALSO, which helps you
identify other commands that might be of use.

Man pages do not always make good tutorials. Sometimes they contain too much detail, and they are often not well-written for
novice users. If you’re learning a new command for the first time, you might want to consult a Unix book or the WEB. The man
pages will provide the most detailed and complete reference information on most commands, however.

The apropos command is used to search the man page headings for a given topic. It is equivalent to man -k. For example, to
find out what man pages exist regarding Fortran, we might try the following:

shell-prompt: apropos fortran

or

shell-prompt: man -k fortran

The whatis is similar to apropos in that it lists short descriptions of commands. However, whatis only lists those commands
with the search string in their name or short description, whereas apropos attempts to list everything related to the string.

The info command is an alternative to man that uses a non-graphical hypertext system instead of flat files. This allows the user
to navigate extensive documentation more efficiently. The info command has a fairly high learning curve, but it is very powerful,
and is often the best option for documentation on a given topic. Some open source software ships documentation in info format
and provides a man page (converted from the info files) that actually has less information in it.

shell-prompt: info gcc

Practice Break

1. Find out how to display a ’/’ after each directory name and a ’*’ after each executable file when running ls.

2. Use apropos to find out what Unix commands to use with bzip files.

Unix Users’s Guide 60 / 177

1.10.4 A Basic Set of Unix Commands

Most Unix commands have short names which are abbreviations or acronyms for what they do. (pwd = print working directory,
cd = change directory, ls = list, ...) Unix was originally designed for people with good memories and poor typing skills. Some
of the most commonly used Unix commands are described below.

Note This section is meant to serve as a quick reference, and to inform new readers about which commands they should learn.
There is much more to know about these commands than we can cover here. For full details about any of the commands
described here, consult the man pages, info pages, or the WEB.

This section uses the same notation conventions as the Unix man pages:

• Optional arguments are shown inside [].

• The ’or’ symbol (|) between two items means one or the other.

• An ellipses (...) means optionally more of the same.

• "file" means a filename is required and a directory name is not allowed. "directory" means a directory name is required, and a
filename is not allowed. "path" means either a filename or directory name is acceptable.

File and Directory Management

cp copies one or more files.

shell-prompt: cp source-file destination-file
shell-prompt: cp source-file [source-file ...] destination-directory

If there is only one source filename, then destination can be either a filename or a directory. If there are multiple source files,
then destination must be a directory. If destination is a filename, and the file exists, it will be overwritten.

shell-prompt: cp file file.bak # Make a backup copy
shell-prompt: cp file file.bak ~ # Copy files to home directory

ls lists files in CWD or a specified file or directory.

shell-prompt: ls [path ...]

shell-prompt: ls # List CWD
shell-prompt: ls /etc # List /etc directory

mv moves or renames files or directories.

shell-prompt: mv source destination
shell-prompt: mv source [source ...] destination-directory

If multiple sources are given, destination must be a directory.

shell-prompt: mv prog1.c Programs

ln link files or directories.

shell-prompt: ln source-file destination-file
shell-prompt: ln -s source destination

Unix Users’s Guide 61 / 177

The ln command creates another path name for the same file. Both names refer to the same file, and changes made through one
appear in the other.

Without -s, a standard directory entry, known as a hard link is created. A hard link is a directory entry that points to the first
block of data in the file. Every file must have at least one hard link to it. If only one path name exists for a file, it is a hard link.
For this reason, removing a file is also known as "unlinking". To create a second hard link, the source and destination path names
must be in the same file system. File systems under Windows appear as different drive letters, such as C: or D:. Under Unix, all
file systems are merged into a single directory tree under /. The df will list file systems and their location within the directory
tree. There is no harm in trying to create a hard link. If it fails, you can do a soft link instead.

With -s, a symbolic link, or soft link is created. A symbolic link is not a standard directory entry, but a pointer to another path
name. It is a directory entry that points to another directory entry rather than the content of the file. Only symbolic links can be
used for directories, and symbolic links to not have to be in the same file system as the source.

shell-prompt: ln -s /etc/hosts ~ # Make a convenient link to hosts

rm removes one or more files.

shell-prompt: rm file [file ...]

shell-prompt: rm temp.txt core a.out

Caution Removing files with rm is not like dragging them to the trash. Once files are removed by rm, they cannot be
recovered.

If there are multiple hard links to a file, removing one of them only removes the link, and remaining links are still valid.

Caution Removing the path name to which a symbolic link points will render the symbolic link invalid. It will become a
dangling link.

srm (secure rm) removes files securely, erasing the file content and directory entry so that the file cannot be recovered. Use this
to remove files that contain sensitive data. This is not a standard Unix command, but a free program that can be easily installed
on most systems via a package manager.

mkdir creates one or more directories.

shell-prompt: mkdir [-p] path name [path name ...]

The -p flag indicates that mkdir should attempt to create any parent directories in the path that don’t already exist. If not used,
mkdir will fail unless all but the last component of the path already exist.

shell-prompt: mkdir Programs
shell-prompt: mkdir -p Programs/C/MPI

rmdir removes one or more empty directories.

shell-prompt: rmdir directory [directory ...]

rmdir will fail if a directory is not completely empty. You may also need to check for hidden files using ls -a directory. To
remove a directory and everything under it, use rm -r directory.

shell-prompt: rmdir Programs/C/MPI

Unix Users’s Guide 62 / 177

find locates files within a subtree using a wide variety of possible criteria.

shell-prompt: find start-directory criteria [action]

find is a very powerful and complex command that can be used to not only find files, but run commands on the files matching
the search criteria.

Find can process globbing patterns like the shell, but note that we need to prevent the shell from processing them before running
find by enclosing them in quotes.

Find all core files (names end with "core")
shell-prompt: find . -name ’*core’

Remove cores
shell-prompt: find . -name ’*core’ -exec rm ’{}’ \;

Remove multiple cores with each rm command (much faster)
shell-prompt: find . -name ’*core’ -exec rm ’{}’ +

df shows the free disk space on all currently mounted partitions.

shell-prompt: df

du reports the disk usage of a directory and everything under it.

shell-prompt: du [-s] [-h] path

The -s (summary) flag suppresses output about each file in the subtree, so that only the total disk usage of the directory is shown.
The -h asks for human-readable output with gigabytes followed by a G, megabytes by an M, etc.

shell-prompt: du -sh Qemu
6.8G Qemu/

Shell Internal Commands

As mentioned previously, internal commands are part of the shell, and serve to control the shell itself. Below are some of the
most common internal commands.

cd changes the current working directory of the shell process. It is described in more detail in Section 1.9.2.

shell-prompt: cd [directory]

pushd changes CWD and saves the old CWD on a stack so that we can easily return.

shell-prompt: pushd directory

Users often encounter the need to temporarily go to another directory, run a few commands, and then come back to the current
directory.

The pushd command is a very useful alternative to cd that helps in this situation. It performs the same operation as cd, but it
records the starting CWD by adding it to the top of a stack of CWDs. You can then return to where the last pushd command
was invoked using popd. This saves you from having to retype the path name of the directory to which you want to return. This
is like leaving a trail of bread crumbs in the woods to retrace your path back home, except the pushd stack will not get eaten by
birds and squirrels, and you won’t end up in a witch’s soup pot.

Unix Users’s Guide 63 / 177

Practice Break
Try the following sequence of commands:

shell-prompt: pwd # Check starting point
shell-prompt: pushd /etc
shell-prompt: more hosts
shell-prompt: pushd /home
shell-prompt: ls
shell-prompt: popd # Back to /etc
shell-prompt: pwd
shell-prompt: more hosts
shell-prompt: popd # Back to starting point
shell-prompt: pwd

exit terminates the shell process.

shell-prompt: exit

This is the most reliable way to exit a shell. In some situations you could also type logout or simply press Ctrl+d, which sends
an EOT character (end of transmission, ASCII/ISO character 4) to the shell.

Simple Text File Processing

cat echoes the contents of one or more text files.

shell-prompt: cat file [file ...]

shell-prompt: cat /etc/hosts

The vis and cat -v commands display invisible characters in a visible way. For example, carriage return characters present
in Windows files are normally not shown by most Unix commands. The vis and cat -v commands will show them as ’ˆM’
(representing Control+M, which is what you would type to produce this character).

shell-prompt: cat sample.txt
This line contains a carriage return.
shell-prompt: vis sample.txt
This line contains a carriage return.\^M
shell-prompt: cat -v sample.txt
This line contains a carriage return.^M

head shows the top N lines of one or more text files.

shell-prompt: head -n # file [file ...]

If a flag consisting of a - followed by an integer number N is given, the top N lines are shown instead of the default of 10.

shell-prompt: head -n 5 prog1.c

The head command can also be useful for generating small test inputs. Suppose you’re developing a new program or script that
processes genomic sequence files in FASTA format. Real FASTA files can contain millions of sequences and take a great deal of
time to process. For testing new code, we don’t need much data, and we want the test to complete in a few seconds rather than
hours. We can use head to extract a small number of sequences from a large FASTA file for quick testing. Since FASTA files
have alternating header and sequence lines, we must always choose a multiple of 2 lines. We use the output redirection operator
(>) to send the head output to a file instead of the terminal screen. Redirection is covered in Section 1.13.

shell-prompt: head -n 1000 really-big.fasta > small-test.fasta

Unix Users’s Guide 64 / 177

tail shows the bottom N lines of one or more text files.

shell-prompt: tail -n # file [file ...]

Tail is especially useful for viewing the end of a large file that would be cumbersome to view with more.

If a flag consisting of a - followed by an integer number N is given, the bottom N lines are shown instead of the default of 10.

shell-prompt: tail -n 5 output.txt

The diff command shows the differences between two text files. This is most useful for comparing two versions of the same file
to see what has changed. Also see cdiff, a specialized version of diff, for comparing C source code.

The -u flag asks for unified diff output, which shows the removed text (text in the first file by not the second) preceded by ’-’,
the added text (text in the second file but not the first) preceded by a ’+’, and some unchanged lines for context. Most people find
this easier to read than the default output format.

shell-prompt: diff -u input1.txt input2.txt

Text Editors

There are more text editors available for Unix systems than any one person is aware of. Some are terminal-based, some are
graphical, and some have both types of interfaces.

All Unix systems support running graphical programs from remote locations, but many graphical programs require a fast con-
nection (100 megabits/sec) or more to function comfortably.

Knowing how to use a terminal-based text editor is therefore a very good idea, so that you’re prepared to work on a remote Unix
system over a slow connection if necessary. Some of the more common terminal-based editors are described below.

vi (visual editor) is the standard text editor for all Unix systems. Most users either love or hate the vi interface, but it’s a good
editor to know since it is available on every Unix system.

nano is an extremely simplistic text editor that is ideal for beginners. It is a rewrite of the pico editor, which is known to have
many bugs and security issues. Neither editor is standard on Unix systems, but both are free and easy to install. These editors
entail little or no learning curve, but are not sophisticated enough for extensive programming or scripting.

emacs (Edit MACroS) is a more sophisticated editor used by many programmers. It is known for being hard to learn, but very
powerful. It is not standard on most Unix systems, but is free and easy to install.

ape is a menu-driven, user-friendly IDE (integrated development environment), i.e. programmer’s editor. It has an interface
similar to PC and Mac programs, but works on a standard Unix terminal. It is not standard on most Unix systems, but is free and
easy to install. ape has a small learning curve, and advanced features to make programming much faster.

Eclipse is a popular open-source graphical IDE written in Java, with support for many languages. It is sluggish over a slow
connection, so it may not work well on remote systems over ssh.

Networking

hostname prints the network name of the machine.

shell-prompt: hostname

This is often useful when you are working on multiple Unix machines at the same time (e.g. via ssh), and forgot which window
applies to each machine.

ssh is used to remotely log into another machine on the network and start a shell.

ssh [name@]hostname

shell-prompt: ssh joe@unixdev1.ceas.uwm.edu

Network commands for transferring files are discussed in Section 1.15.

Unix Users’s Guide 65 / 177

Identity and Access Management

passwd changes your password. It asks for your old password once, and the new one twice (to ensure that you don’t accidentally
set your password to something you don’t know because your finger slipped). Unlike many graphical password programs,
passwd does not echo anything for each character typed. Even allowing someone to see the length of your password is a bad
idea from a security standpoint.

shell-prompt: passwd

The passwd command is generally only used for setting local passwords on the Unix machine itself. Many Unix systems are
configured to authenticate users via a remote service such as Lightweight Directory Access Protocol (LDAP) or Active Directory
(AD). Changing LDAP or AD passwords may require using a web portal to the LDAP or AD server instead of the passwd
command.

Terminal Control

clear clears your terminal screen (assuming the TERM environment variable is properly set).

shell-prompt: clear

reset resets your terminal to its default state. This is useful when your terminal has been corrupted by bad output, such as when
attempting to view a binary file with cat.

Terminals are controlled by magic sequences, sequences of invisible control characters sent from the host computer to the terminal
amid the normal output. Magic sequences move the cursor, change the color, change the international character set, etc. Binary
files contain random data that sometimes by chance contain magic sequences that could alter the mode of your terminal. If this
happens, running reset will usually correct the problem. If not, you will need to log out and log back in.

shell-prompt: reset

Table 1.7 provides a quick reference for looking up common Unix commands. For details on any of these commands, run man
command (or info command on some systems).

Unix Users’s Guide 66 / 177

Synopsis Description
ls [file|directory] List file(s)
cp source-file destination-file Copy a file
cp source-file [source-file ...] directory Copy multiple files to a directory
mv source-file destination-file Rename a file
mv source-file [source-file ...] directory Move multiple files to a directory

ln source-file destination-file Create another name for the same file. (source and
destination must be in the same file system)

ln -s source destination Create a symbolic link to a file or directory
rm file [file ...] Remove one or more files
rm -r directory Recursively remove a directory and all of its contents
srm file [file ...] Securely erase and remove one or more files
mkdir directory Create a directory
rmdir directory Remove a directory (the directory must be empty)
find start-directory criteria Find files/directories based on flexible criteria
make Rebuild a file based on one or more other files
od/hexdump Show the contents of a file in octal/hexadecimal
awk Process tabular data from a text file
sed Stream editor. Echo files, making changes to contents.
sort Sort text files based on flexible criteria
uniq Echo files, eliminating adjacent duplicate lines.
diff Show differences between text files.
cmp Detect differences between binary files.
cdiff Show differences between C programs.
cut Extract substrings from text.
m4 Process text files containing m4 mark-up.
chfn Change finger info (personal identity).
chsh Change login shell.
su Substitute user.
cc/clang/gcc/icc Compile C programs.
f77/f90/gfortran/ifort Compile Fortran programs.
ar Create static object libraries.
indent Beautify C programs.
astyle Beautify C, C++, C#, and Java programs.
tar Pack a directory tree into a single file.
gzip Compress files.
gunzip Uncompress gzipped files.
bzip2 Compress files better (and slower).
bunzip2 Uncompress bzipped files.
zcat/zmore/zgrep/bzcat/bzmore/bzgrep Process compressed files.
exec command Replace shell process with command.
date Show the current date and time.
cal Print a calendar for any month of any year.
bc Unlimited precision calculator.
printenv Print environment variables.

Table 1.7: Unix Commands

Unix Users’s Guide 67 / 177

1.10.5 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What types of commands have to be internal to the shell? Give one example and explain why it must be internal.

2. How can you find a list of the basic Unix commands available on your system?

3. How can you find out whether the grep command is internal or external, and where it is located?

4. What kind of suffering did computer users have to endure in order to read documentation before the Unix renaissance?
How did Unix put an end to such suffering?

5. How can we learn about all the command-line flags available for the tail command?

6. How can we copy the file /tmp/sample.txt to the CWD?

7. How can we copy all files whose names begin with "sample" and end with ".txt" to the CWD?

8. How can we move all the files whose names end with ".py" to a subdirectory of the CWD called "Python"?

9. How can we create another filename "./test-input.txt" for the file "./Data/input.txt"?

10. What is a hard link?

11. What is a symbolic link?

12. What do we get when we remove the path name to which a symbolic link points?

13. How do we create a new directory /home/joe/Data/Project1 if the Data directory does not exist and the CWD is /home/joe?

14. How do we remove the directory ./Data if it is empty? If it is not empty?

15. How can we find out how much disk space is available in each file system?

Unix Users’s Guide 68 / 177

16. How can we find out how much space is used by the Data directory?

17. How can we change CWD to /tmp, then to /etc and then return to the original CWD?

18. How do we exit the shell?

19. How can we see if there are carriage returns in graph.py?

20. How can we see the first 20 lines of output.txt?

21. How can we see the last 20 lines of output.txt?

22. How can we see what has changed between analysis.c.old and analysis.c?

23. Which text editor is available on all Unix systems?

24. How can we find out the name of the machine running our shell?

25. How can user joe log into the remote server unixdev1.ceas.uwm.edu to run commands on it?

26. How do we change our local password on a Unix system?

27. How do we change our password for a Unix system that relies on LDAP or AD?

28. How do we clear the terminal display?

29. How do we reset the terminal mode to defaults?

1.11 POSIX and Extensions

Unix-compatible systems generally conform to standards published by the International Organization for Standardization (ISO),
the Open Group, and the IEEE Computer Society.

The primary standard used for this purpose is POSIX, the Portable Operating System standard based on UnIx. Programs and
commands that conform to the POSIX standard will work on any Unix system. Therefore, developing your programs and scripts
according to POSIX will prevent the need for even minor changes when porting from one Unix variant to another.

Nevertheless, many common Unix programs have been enhanced beyond the POSIX standard to provide conveniences. Fortu-
nately, most such programs are open source and can therefore be easily installed on most Unix systems. Features that do not
conform to the POSIX standard are known as extensions. Extensions are often described according to their source, e.g. BSD
extensions that come from BSD Unix variants or GNU extensions that come from the GNU software project.

Many standard commands such as awk, make, and sed, may contain extensions that depend on the specific operating system. For
example, BSD systems use the BSD versions of awk, make, and sed, which contain BSD extensions, while GNU/Linux systems
use the GNU versions of awk, make, and sed, which contain GNU extensions.

When installing GNU software on BSD systems, the GNU version of the command is usually prefixed with a ’g’, to distinguish
it from the native BSD command. For example, on FreeBSD, "make" and "awk" are the BSD implementations and "gmake" and
"gawk" would be the GNU implementations. Likewise, on GNU/Linux systems, BSD commands would generally be prefixed
with a ’b’ or ’bsd’. The "make" and "tar" commands on GNU/Linux would refer to GNU versions and the BSD versions would
be "bmake" and "bsdtar".

All of them will support POSIX features, so if you use only POSIX features, they will behave the same way. If you use GNU or
other extensions, you should use the GNU command, e.g. gawk instead of awk.

Program Example of extensions
BSD Tar Support for extracting ISO and Apple DMG files
GNU Make Various "shortcut" rules for compiling multiple source files
GNU Awk Additional built-in functions

Table 1.8: Common Extensions

Unix Users’s Guide 69 / 177

1.11.1 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What is POSIX and why is it important?

2. What is an extension?

3. Does the use of extensions always prevent things from working on other Unix systems?

1.12 Subshells

Commands placed between parentheses are executed in a new child shell process rather than the shell process that received the
commands as input.

This can be useful if you want a command to run in a different directory or with other alterations to its environment, without
affecting the current shell process.

shell-prompt: (cd /etc; ls)

Since the commands above are executed in a new shell process, the shell process that printed "shell-prompt: " will not have its
current working directory changed. This command has the same net effect as the following:

shell-prompt: pushd /etc
shell-prompt: ls
shell-prompt: popd

Unix Users’s Guide 70 / 177

1.12.1 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. Show a single Unix command that runs pwd and produces the output "/etc", without changing the CWD of the shell
process.

1.13 Redirection and Pipes

1.13.1 Device Independence

Many operating systems that came before Unix treated each input or output device differently. Each time a new device became
available, programs would have to be modified in order to access it. This is intuitive, since the devices all look different and
perform different functions.

The Unix designers realized that this is actually unnecessary and a waste of programming effort, so they developed the concept
of device independence. What this means is that Unix treats virtually every input and output device exactly like an ordinary file.
All input and output, whether to/from a file on a disk, a keyboard, a mouse, a scanner, or a printer, is simply a stream of bytes to
be input or output using the same tools.

Most I/O devices are actually accessible as a device file in /dev. For example, the primary CD-ROM might be /dev/cd0, the
main disk /dev/ad0, the keyboard /dev/kbd0, and the mouse /dev/sysmouse.

A user with sufficient permissions can view input coming from these devices using the same Unix commands we use to view a
file:

shell-prompt: cat /dev/kbd0
shell-prompt: more /dev/cd0

In fact, data are often recovered from corrupted file systems or accidentally deleted files by searching the raw disk partition as a
file using standard Unix commands such as grep!

Unix Users’s Guide 71 / 177

shell-prompt: grep string /dev/ad0s1f

A keyboard sends text data, so /dev/kbd0 is like a text file. Many other devices send binary data, so using cat to view them
would output gibberish. To see the raw input from a mouse as it is being moved, we could instead use hexdump, which displays
the bytes of input as numbers rather than characters:

shell-prompt: hexdump /dev/sysmouse

Some years ago while mentoring my son’s robotics team, as part of a side project, I reverse-engineered a USB game pad so I
could control a Lego robot via Bluetooth from a laptop. Thanks to device-independence, no special software was needed to figure
out the game pad’s communication protocol.

After plugging the game pad into my FreeBSD laptop, the system creates a new UHID (USB Human Interface Device) under
/dev. The dmesg command shows the name of the new device file:

ugen1.2: <vendor 0x046d product 0xc216> at usbus1
uhid0 on uhub3
uhid0: <vendor 0x046d product 0xc216, class 0/0, rev 1.10/3.00, addr 2> on usbus1

One can then view the input from the game pad using hexdump:

FreeBSD manatee.acadix bacon ~ 410: hexdump /dev/uhid0
0000000 807f 7d80 0008 fc04 807f 7b80 0008 fc04
0000010 807f 7780 0008 fc04 807f 6780 0008 fc04
0000020 807f 5080 0008 fc04 807f 3080 0008 fc04
0000030 807f 0d80 0008 fc04 807f 0080 0008 fc04
0000060 807f 005e 0008 fc04 807f 005d 0008 fc04
0000070 807f 0060 0008 fc04 807f 0063 0008 fc04
0000080 807f 006c 0008 fc04 807f 0075 0008 fc04
0000090 807f 0476 0008 fc04 807f 1978 0008 fc04
00000a0 807f 4078 0008 fc04 807f 8c7f 0008 fc04
00000b0 807f 807f 0008 fc04 807f 7f7f 0008 fc04
00000c0 807f 827f 0008 fc04 807f 847f 0008 fc04
00000d0 807f 897f 0008 fc04 807f 967f 0008 fc04
00000e0 807f a77f 0008 fc04 807f be80 0008 fc04
00000f0 807f d980 0008 fc04 807f f780 0008 fc04
0000100 807f ff80 0008 fc04 807f ff83 0008 fc04
0000110 807f ff8f 0008 fc04 807f ff93 0008 fc04

To understand these numbers, we need to know a little about hexadecimal, base 16. This is covered in detail in [?]. In short, it
works the same as decimal, but we multiply by powers of 16 rather than 10, and digits go up to 15 rather than 9. Digits for 10
through 15 are A, B, C, D, E, and F. The largest possible 4-digit number is therefore FFFF_16. 8000_16 is in the middle of the
range.

0000_16 = 0 * 16^3 + 0 * 16^2 + 0 * 16^1 + 0 * 16^0 = 0_10
8000_16 = 8 * 16^3 + 0 * 16^2 + 0 * 16^1 + 0 * 16^0 = 32,678_10
FFFF_16 = 15 * 16^3 + 15 * 16^2 + 15 * 16^1 + 15 * 16^0 = 65,535_10

Unix Users’s Guide 72 / 177

It was easy to see that moving the right joystick up resulted in lower numbers in the 3rd and 7th columns, while moving down
increased the values. Center position sends a value around 8000 (hexadecimal), fully up is around 0, fully down is ffff.

It was then easy to write a small program to read the joystick position from the game pad (by simply opening /dev/uhid0 like
any other file) and send commands over Bluetooth to the robot, adjusting motor speeds accordingly. The Bluetooth interface is
simply treated as an output file.

1.13.2 Redirection

Since I/O devices and files are interchangeable, Unix shells can provide a facility called redirection to easily interchange them
for any process without the process even knowing it.

Redirection depends on the notion of a file stream. You can think of a file stream as a hose connecting a program to a particular
file or device. Redirection simply disconnects the hose from the default file or device (such as the keyboard or terminal screen)
and connects it to another file or device chosen by the user.

Every Unix process has three standard streams that are open from the moment the process is born. The standard streams for a
shell process are normally connected to the terminal, as shown in Table 1.9.

Stream Purpose Default Connection
Standard Input User input Terminal keyboard
Standard Output Normal output Terminal screen
Standard Error Errors and warnings Terminal screen

Table 1.9: Standard Streams

Redirection in the shell allows any or all of the three standard streams to be disconnected from the terminal and connected to
a file or other I/O device. It uses special operator characters within the commands to indicate which stream(s) to redirect and
where. The basic redirection operators shells are shown in Table 1.10.

Operator Shells Redirection type
< All Standard Input
> All Standard Output (overwrite)
>> All Standard Output (append)
2> Bourne-based Standard Error (overwrite)
2>> Bourne-based Standard Error (append)

>& C shell-based Standard Output and Standard Error
(overwrite)

>>& C shell-based Standard Output and Standard Error
(append)

Table 1.10: Redirection Operators

Note Memory trick: A redirection operator is an arrow that points in the direction of data flow.

shell-prompt: ls > listing.txt # Overwrite with listing of .
shell-prompt: ls /etc >> listing.txt # Append listing of /etc

In the examples above, the ls process sends its output to listing.txt instead of the standard output. However, the filename
listing.txt is not an argument to the ls process. The ls process never even knows about this output file.

The redirection is handled by the shell and the shell removes "> listing.txt" and ">> listing.txt" from these commands before
executing them. So, the first ls receives no arguments, and the second receives only /etc. Most programs have no idea whether
their output is going to a file, a terminal, or some other device. They don’t need to know and they don’t care.

Unix Users’s Guide 73 / 177

Caution
Using output redirection (>, 2>, or >&) in a command will normally overwrite (clobber) the file that you’re redirecting to,
even if the command itself fails. Be very careful not to use output redirection accidentally. This most commonly occurs
when a careless user meant to use input redirection, but pressed the wrong key.
The moment you press Enter after typing a command containing "> filename", filename will be erased! Remember that
the shell performs redirection, not the command, so filename is clobbered before the command is even executed.
If noclobber is set for the shell, output redirection to a file that already exists will result in an error. The noclobber
option can be overridden by appending a ! to the redirection operator in C shell derivatives or a | in Bourne shell
derivatives. For example, >! can be used to force overwriting a file in csh or tcsh, and >| can be used in sh, ksh, or
bash.

More often than not, we want to redirect both normal output and error messages to the same place. This is why C shell and its
derivatives use a combined operator that redirects both at once.

shell-prompt: find /etc -name >& all-output.txt

The same effect can be achieved with Bourne-shell derivatives using another operator that redirects one stream to another stream.
In particular, we redirect the standard output (stream 1) to a file (or device) and at the same time redirect the standard error
(stream 2) to stream 1.

shell-prompt: find /etc > all-output.txt 2>&1

In Bourne family shells, we can separately redirect the standard output with > and the standard error with 2>:

shell-prompt: find /etc > list.txt 2> errors.txt

If we want to separate standard output and standard error in a C shell or T shell session, we can use a subshell under which the
find command redirects only the standard output. The output from the subshell process will then only contain the standard error
left over from find, which we can redirect with &>:

shell-prompt: (find /etc > list.txt) >& errors.txt

If a program takes input from the standard input, we can redirect input from a file as follows:

shell-prompt: command < input-file

For example, consider the "bc" (binary calculator) command is an arbitrary-precision calculator which inputs numerical expres-
sions from the standard input and writes the results to the standard output. It’s a good idea to use the --mathlib flag with bc
for more complete functionality.

shell-prompt: bc --mathlib
3.14159265359 * 4.2 ^ 2 + sqrt(30)
60.89491440932
quit

In the example above, the user entered "3.14159265359 * 4.2 ˆ 2 + sqrt(30)" and "quit" and the bc program output "60.89491440932".
We could instead place the input shown above in a file using any text editor, such as nano or vi, or even using cat with keyboard
input and output redirection as a primitive editor:

shell-prompt: cat > bc-input.txt
3.14159265359 * 4.2 ^ 2 + sqrt(30)
quit
(Type Ctrl+d to signal the end of input to the cat process)
shell-prompt: cat bc-input.txt
3.14159265359 * 4.2 ^ 2 + sqrt(30)
quit

Now that we have the input in a file, we can feed it to the bc process using input redirection instead of retyping it on the keyboard:

shell-prompt: bc --mathlib < bc-input.txt
60.29203070318

Unix Users’s Guide 74 / 177

1.13.3 Special Files in /dev

The standard streams themselves are represented as device files on Unix systems. This allows us to redirect one stream to
another without modifying a program, by appending the stream to one of the device files /dev/stdout or /dev/stderr.
For example, if a program sends output to the standard output and we want to send it instead to the standard error, we could do
something like the following:

shell-prompt: printf "Oops!" >> /dev/stderr

If we would like to simply discard output sent to the standard output or standard error, we can redirect it to /dev/null. For
example, to see only error messages (standard error) from myprog, we could do the following:

shell-prompt: ./myprog > /dev/null

To see only normal output and not error messages, assuming Bourne shell family:

shell-prompt: ./myprog 2> /dev/null

In C shell family:

shell-prompt: (find /etc > output.txt) >& /dev/null ; cat output.txt

The device /dev/zero is a readable file that produces a stream of zero bytes.

The device /dev/random is a readable file that produces a stream of random integers in binary format. We can use the dd
command, a bit copy program, to copy a fixed number of bytes from one file to another. We specify the input file with "if=",
output with "of=", block size with "bs=", and the number of blocks with "count=". Total data copied will be block-size * count.

shell-prompt: dd if=/dev/random of=random-data bs=1000000 count=1

1.13.4 Pipes

Very often, we want to use the output of one program as input to another. Such a thing could be done using redirection, as shown
below:

shell-prompt: ls > listing.txt
shell-prompt: more listing.txt

The same task can be accomplished in one command using a pipe. A pipe redirects one of the standard streams, just as redirection
does, but to or from another process instead of a file or device. In other words, we can use a pipe to send the standard output
and/or standard error of one process directly to the standard input of another process.

A pipe is constructed by placing the pipe operator (|) between two commands. The whole chain of commands connected by pipes
is called a pipeline.

Example 1.2 Simple Pipe
The command below uses a pipe to redirect the standard output of an ls process directly to the standard input of a more process.

shell-prompt: ls | more

Since a pipe runs multiple processes in the same shell, it is necessary to understand the concept of foreground and background
processes, which are covered in detail in Section 1.18.

Multiple processes can output to a terminal at the same time, although the results would obviously be chaos in most cases.

In contrast to output, only one process can receiving input from the keyboard, however. It would be a remarkable coincidence if
the same input made sense to two different programs.

The foreground process running under a given shell process is defined as the process that receives the input from the standard
input device (usually the keyboard). This is the only difference between a foreground process and a background process.

When running a pipeline command, the last command in the pipeline becomes the foreground process. All others run in the
background, i.e. do not use the standard input device inherited from the shell process. Hence, when we run:

Unix Users’s Guide 75 / 177

shell-prompt: ls | more

It is the more command that receives input from the keyboard. The more command has its standard input redirected from the
standard output of ls, and the standard input of the ls command is effectively disabled.

Note The more command is somewhat special: Since its standard input is used to receive input from the pipe, it opens another
stream to connect to the keyboard so that it can still get user input, such as pressing the space bar for another screen, etc.

This is such a common practice that Unix has defined the term filter to apply to programs that can be used in this way. A filter is
any command that can receive input from the standard input and send output to the standard output. Many Unix commands are
designed to accept a file name as an argument, but to use the standard input and/or standard output if no filename arguments are
provided.

Example 1.3 Filters
The more command is commonly used as a filter. It can read a file whose name is provided as an argument, but will use the
standard input if no argument is provided. Hence, the following two commands have the same effect:

shell-prompt: more names.txt
shell-prompt: more < names.txt

The only difference between these two commands is that in the first, the more process receives names.txt as a command line
argument, opens the file itself (creating a new file stream), and reads from the new stream (not the standard input stream). In
the second instance, the shell process opens names.txt and connects the standard input stream of the more process to it. The
more process then uses another stream to read user input from the keyboard.
Using the filtering capability of more, we can paginate the output of any command:

shell-prompt: ls | more
shell-prompt: find . -name ’*.c’ | more
shell-prompt: sort names.txt | more

We can string any number of commands together using pipes. The only limitations are imposed by the memory requirements of
the processes in the pipeline. For example, the following pipeline sorts the names in names.txt, removes duplicates, filters out all
names not beginning with ’B’, and shows the first 100 results one page at a time.

shell-prompt: sort names.txt | uniq | grep ’^B’ | head -n 100 | more

To see lines 101 through 200 of a file output.txt:

shell-prompt: head -n 200 output.txt | tail -n 100

One more useful tool worth mentioning is the tee command. The tee command is a simple program that reads from its standard
input and writes to both the standard output and to one or more files whose names are provided on the command line. This allows
you to view the output of a program on the screen and save it to a file at the same time.

shell-prompt: ls | tee listing.txt

Recall that Bourne-shell derivatives do not have combined operators for redirecting standard output and standard error at the
same time. Instead, we redirect the standard output to a file or device, and redirect the standard error to the standard output using
2>&1.

We can use the same technique with a pipe, but there is one more condition: For technical reasons, the 2>&1 must come before
the pipe.

shell-prompt: ls | tee listing.txt 2>&1 # Won’t work
shell-prompt: ls 2>&1 | tee listing.txt # Will work

Unix Users’s Guide 76 / 177

The yes command (much like Jim Carrey in "Yes Man") produces a stream of y’s followed by newlines. It is meant to be piped
into a program that prompts for y’s or n’s in response to yes/no questions, so that the program will receive a yes answer to all of
its prompts and run without user input.

shell-prompt: yes | ./myprog

The yes command can actually print any response we want, via a command line argument. To answer ’n’ to every prompt, we
could do the following:

shell-prompt: yes n | ./myprog

In cases where the response isn’t always the same, we can feed a program any sequence of responses using redirection or pipes.
Be sure to add a newline (\n) after each response to simulate pressing the Enter key:

shell-prompt: printf "y\nn\ny\n" | ./myprog

Or, to save the responses to a file for repeated use:

shell-prompt: printf "y\nn\ny\n" > responses.txt
shell-prompt: ./myprog < responses.txt

1.13.5 Misusing Pipes

Aside
It’s important to learn from the mistakes of others, because we don’t have time to make them all ourselves.

Users who don’t fully understand Unix and processes often fall into bad habits that can potentially be costly. There are far too
many such habits to cover here: One could write a separate 1,000-page volume called "Favorite Bad Habits of Unix Users". As
a less painful alternative, we’ll explore one common bad habit in detail and try to help you understand how to spot others. Our
feature habit of the day is the use of the cat command at the head of a pipeline:

shell-prompt: cat names.txt | sort | uniq > outfile

So what’s the alternative, what’s wrong with using cat this way, what’s the big deal, why do people do it, and how do we know
it’s a problem?

1. The alternative:

Most commands used downstream of cat in situations like this (e.g. sort, grep, more, etc.) are capable of reading a file
directly if given the filename as an argument:

shell-prompt: sort names.txt | uniq > outfile

Even if they don’t take a filename argument, we can always use simple redirection instead of a pipe:

shell-prompt: sort < names.txt | uniq > outfile

2. The problem:

• Using cat this way just adds overhead in exchange for no benefit. Pipes are helpful when you have to perform multiple
processing steps in sequence. By running multiple processes at the same time instead of one after the other, we can
improve resource utilization. For example, while sort is waiting for disk input, uniq can use the CPU. Better yet, on a
computer with multiple cores, the processes can utilize two cores at the same time.
However, the cat command doesn’t do any processing at all. It just reads the file and feeds the bytes into the first pipe.
In using cat this way, here’s what happens:

(a) The cat command reads blocks from the file into a file input buffer.

Unix Users’s Guide 77 / 177

(b) It then copies the input buffer, one byte at a time, to its standard output buffer, without processing the data in any
way. It just senselessly moves data (through a proverbial straw) from one memory buffer to another.

(c) When the standard output buffer is full, it is copied to the pipe, which is yet another memory buffer.
(d) Characters in the pipe buffer are copied to the standard input buffer of the next command (e.g. sort).
(e) The sort can finally begin processing the data.

This is like pouring a drink into a glass, then moving it to a second glass using an eye dropper, then pouring it into a
third class and finally a fourth glass before actually drinking it.
It’s much simpler and less wasteful for the sort command to read directly from the file.

• Using a pipe this way also prevents the downstream command from optimizing disk access. A program such as sort
might use a larger input buffer size to reduce the number of disk reads. Reading fewer, larger blocks from disk can
keep the latency incurred for each disk operation from adding up, thereby reducing run time. This is not possible when
reading from a pipe, which is a fixed-size memory buffer.

3. What’s the big deal?

Usually, this is not much of a problem. Wasting a few seconds or minutes on your laptop won’t hurt anyone. However,
sometimes mistakes like this one are incorporated into HPC cluster jobs using hundreds of cores for weeks at a time. In
that case, it could increase run time by several days, delaying the work of other users who have jobs waiting in the queue,
as well as your own. Not to mention, the wasted electricity could cost the organization hundreds of dollars and create
additional pollution.

4. Why do people do things like this?

By far the most common response I get when asking people about this sort of thing is: "[Shrug] I copied this from an
example on the web. Didn’t really think about it."

Occasionally, someone might think they are being clever by doing this. They believe that this speeds up processing by
splitting the task into two processes, hence utilizing multiple cores, one running cat to handle the disk input and another
dedicated to sort or whatever command is downstream. However, this strategy only helps if both processes are CPU-bound,
i.e. they spend more time using the CPU than performing input and output. This is not the case for the cat command.

One might also think it helps by overlapping disk input and CPU processing, i.e. cat can read the next block of data while
sort is processing the current one. This may have worked a long time ago using slow disks and unsophisticated operating
systems, but it only backfires with modern disks and modern Unix systems that have sophisticated disk buffering.

In reality, this strategy only increases the amount of CPU time used, and almost always increases run time.

5. Detection:

Detecting performance issues is pretty easy. The most common tool is the time command.

shell-prompt: time fgrep GGTAGGTGAGGGGCGCCTCTAGATCGGAAGAGCACACGTCTGAACTCCAGTCA test.vcf ←↩
> /dev/null

2.539u 6.348s 0:09.86 89.9% 92+173k 35519+0io 0pf+0w

We have to be careful when using time with a pipeline, however. Depending on the shell and the time command used
(some shells have in internal implementation), it may not work as expected. We can ensure proper function by wrapping
the pipeline in a separate shell process, which is then timed:

shell-prompt: time sh -c "cat test.vcf | fgrep ←↩
GGTAGGTGAGGGGCGCCTCTAGATCGGAAGAGCACACGTCTGAACTCCAGTCA > /dev/null"

2.873u 17.008s 0:13.68 145.2% 33+155k 33317+0io 0pf+0w

Table 1.11 compares the run times (wall time) and CPU time of the direct fgrep and piped fgrep shown above three
different operating systems.

All runs were performed on otherwise idle system. Several trials were run to ensure reliable results. Times from the first
read of test.vcf were discarded, since subsequent runs benefit from disk buffering (file contents still in memory from
the previous read). The wall time varied significantly on the CentOS system, with the piped command running in less wall
time for a small fraction of the trials. The times shown in the table are typical. Times for FreeBSD and MacOS were fairly
consistent.

Note that there is significant variability between platforms which should not be taken too seriously. These tests were not
run on identical hardware, so they do not tell us anything about relative operating system performance.

Unix Users’s Guide 78 / 177

We can also collect other data using tools such as top to monitor CPU and memory use and iostat to monitor disk activity.
These commands are covered in more detail in Section 1.14.15 and Section 1.14.16.

System specs Pipe wall time No pipe wall time Pipe CPU time No pipe CPU time
CentOS 7 i7 2.8GHz 33.43 29.50 13.59 8.45
FreeBSD Phenom
3.2GHz 13.01 8.90 18.76 8.43

MacBook i5 2.7GHz 81.09 81.35 84.02 81.20

Table 1.11: Run times of pipes with cat

1.13.6 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. How does device independence simplify life for Unix users? Give an example.

2. Show an example Unix command that displays the input from a mouse as it is being moved or clicked.

3. What are the standard streams associated with every Unix process? To what file or device are they connected by default?

4. Show a Unix command that saves the output of ls -l to a file called long-list.txt.

5. Show a Unix command that appends the output of ls -l /etc to a file called long-list.txt.

6. Show a Unix command that discards the normal output of ls -l /etc and shows the error messages on the terminal screen.

7. Show a Bourne shell command that saves the output of ls -al /etc to output.txt and any error messages to errors.txt.

8. Show a C shell command that saves the output and errors of ls -al /etc to all-output.txt.

Unix Users’s Guide 79 / 177

9. How does more list.txt differ from more < list.txt?

10. Show a Unix command that creates a 1 gigabyte file called new-image filled with 0 bytes.

11. What are two major advantages of pipes over redirecting to a file and then reading it?

12. Show a Unix command that lists all the files in and under /etc, sorts them, and paginates the output.

13. What is a foreground process?

14. Which program in the following pipeline runs in the foreground?

shell-prompt: find /etc | sort | more

15. What is a filter program?

16. What is the maximum number of commands allowed in a Unix pipeline?

17. Show a Unix command that prints a long listing of /usr/local/bin to the terminal and at the same time saves it to the file
local-bin.txt.

18. Do the same as above, but include any error messages in the file as well. Show the command for both C shell and Bourne
shell.

19. Is it a good idea to feed files into a pipe using cat, rather than have the next command read them directly? Why or why
not?

Example: Why is better?
cat file.txt | sort | uniq
sort file.txt | uniq

1.14 Power Tools for Data Processing

1.14.1 Introduction

Congratulations on reaching the holy land of Unix data processing. It has often been said that if you know Unix well, you may
never need to write a program. The tools provided by Unix often contain all the functionality you need to process your data.
They are like a box of Legos from which we can construct a machine to perform almost any data analysis imaginable from the
Unix shell.

Most of these tools function as filters, so they can be incorporated into pipelines. Most also accept filenames as command-line
arguments for simpler use cases.

In this section, we’ll introduce some of the most powerful tools that are heavily used by researchers to process data files. This
will certainly reduce, if not eliminate, the need to write your own programs for many projects. This is only an introduction to
make you aware of the available tools and the power they can give you.

For more detailed information, consult the man pages and other sources. Some tools, such as awk and sed, have entire books
written about them, in case you want to explore in-depth.

However, do not set out to learn as much as you can about these tools. Set out to learn as juch as you need. The ability to show off
your vast knowledge is not the ability to achieve. Knowledge is not wisdom. Cleverness is not wisdom. Wisdom is doing. Learn
what you need to accomplish today’s goals as elegantly as possible, and then do it. You will learn more from this doing than from
any amount of studying. You will develop problem solving skills and instincts, which are far more valuable than encyclopedic
knowledge.

Never stop wondering if there might be an even more elegant solution. Albert Einstein was once asked what was his goal in
life. His response: "To simplify." Use the tools presented here to simplify your research and by extension, your life. With this
approach can achieve great things without great effort and spend your time savoring the wonders and mysteries of your work
rather than memorizing facts that might come in handy one day.

Unix Users’s Guide 80 / 177

1.14.2 grep

grep shows lines in one or more text streams that match a given regular expression (RE). It is an acronym for Global Regular
Expression Print (or Pattern or Parser if you prefer).

shell-prompt: grep expression [file ...]

The expression is often a simple string, but can represent RE patterns as described in detail by man re_format on FreeBSD.
There are also numerous web pages describing REs.

Using simple strings or REs, we can search any file stream for lines containing information of interest. By knowing how to
construct REs that represent the information you seek, you can easily identify patterns in your data.

REs resemble globbing patterns, but they are not the same. For example, ’*’ by itself in a globbing pattern means any sequence
of 0 or more characters. In an RE, ’*’ means 0 or more of the preceding character. ’*’ in globbing is expressed as ’.*’ in an RE.
Some of the most common RE patterns are shown in Table 1.12.

Pattern Meaning
. Any single character
* 0 or more of the preceding character
+ 1 or more of the preceding character

[] One character in the set or range of the enclosed characters
(same as globbing)

ˆ Beginning of the line
$ End of the line
.* 0 or more of any character
.+ 1 or more of any character
[a-z]* 0 or more lower-case letters

Table 1.12: RE Patterns

The command below shows all lines containing a call to the printf() function in prog1.c.

shell-prompt: grep printf prog1.c

We might also wish to show all lines containing variable names in prog1.c. Since we are looking for any variable name rather
than one particular variable, we cannot use a simple string and must construct a regular expression. Variable names begin with a
letter or underscore and may contain any number of letters, underscores, or digits after that. So our RE must require a letter or
underscore for the first character and then accept zero or more letters, digits, or underscores after that.

shell-prompt: grep ’[a-zA-Z_][a-zA-Z0-9_]*’ prog1.c

The following shows lines that have a ’#’ in the first column:

shell-prompt: grep ’^#’ prog1.c

Note Since REs share many special characters with globbing patterns, we must enclose the RE in quotes to prevent the shell
from treating it as a globbing pattern.

Note If we want to literally match a special character such as ’.’ or ’*’ literally, we must escape it (preceded it with a ’\’). For
example, to locate method calls in a Java program, which have the form object.method(arguments);, we could use the following:

shell-prompt: grep ’[a-zA-Z_][a-zA-Z0-9_]*\.[a-zA-Z]*\(.*\);’ prog1.java

Unix Users’s Guide 81 / 177

As an example of searching data files, rather than program code, suppose we would like to find all the lines containing contractions
in text file. This would consist of some letters, followed by an apostrophe, followed by more letters. Since the apostrophe is the
same character as the single quotes we might use to enclose the RE, we either need to escape it (with a ’\’) or use double quotes
to enclose the RE.

shell-prompt: grep ’[a-zA-Z]+\’[a-zA-Z]+’
shell-prompt: grep "[a-zA-Z]+’[a-zA-Z]+"

Another example would be searching for DNA sequences in a genome. We might use this to locate adapters, artificial sequences
added to the ends of DNA fragments for the sequencing process, in our sequence data. Sequences are usually stored one per line
in a text file in FASTA format. A common adapter sequence is "CTGTCTCTTATA".

Note We can speed up processing by using grep --fixed-strings or fgrep instead of a regular grep. This uses a more efficient
simple string comparison instead of the more complex regular expression matching.

shell-prompt: fgrep CTGTCTCTTATA file.fasta
GCGGCCAACACCTTGCCTGTATTGGCATCCATGATGAAATGGGCGTAACCCTGTCTCTTATACACATCTCCGAG
AAAGGCCTGTATGATAAGTTGGCAAATTTCCTCAAGATTGTTTACTTGATACACCTGTCTCTTATACACATCTC
GACCGAGGCACTCGCCGCGCTTGAGCTCGAGATCGATGCCGTCGACCTGTCTCTTATACACATCTCCGAGCCCA
AAAAAATCCCTCCGAAGCATTGTAGGTTTCCATGCTGTCTCTTATACACATCTCCGAGCCCACGAGACTCCTGA

It’s hard to see the pattern we were looking for in this output. To solve this problem, we can colorize any matched patterns using
the --color flag as shown in Figure 1.3.

Figure 1.3: Colorized grep output

Unix Users’s Guide 82 / 177

There is an extended version of regular expressions that is not supported by the normal grep command. Extended REs include
things like alternative strings, which are separated by a ’|’. For example, we might want to search for either of two adapter
sequences. To enable extended REs, we use egrep or grep --extended-regexp.

shell-prompt: egrep ’CTGTCTCTTATA|AGATCGGAAGAG’ file.fasta

1.14.3 awk

AWK, an acronym for Aho, Weinberger, and Kernighan (the original developers of the program), is an extremely powerful tool
for processing tabular data. Like grep, it supports RE matching, but unlike grep, it can process individual columns, called
fields, in the data. It also includes a flexible scripting language that closely resembles the C language, so we can perform highly
sophisticated processing of whole lines or individual fields.

Awk can be used to automate many of the same tasks that researchers often perform manually in a spreadsheet program such as
LibreOffice Calc or MS Excel.

There are multiple implementations of awk. The most common are "The one true awk", evolved from the original awk code and
used on many BSD systems. Gawk, the GNU project implementation, is used on most Linux systems. Mawk is an independent
implementation that tends to outperform the others. It is available in most package managers. Awka is an awk-to-C translator
that can convert most awk scripts to C for maximize performance.

Fields by default are separated by white space, i.e. space or tab characters. However, awk allows us to specify any set of
separators using an RE following the -F flag or embedded in the script, so we can process tab-separated (.tsv) files, comma-
separated (.csv) files, or any other data that can be broken down into columns.

An awk script consists of one or more lines containing a pattern and an action. The action is enclosed in curly braces, like a C
code block.

pattern { action }

The pattern is used to select lines from the input, usually using a relational expression such as those found in an if statement.
The action determines what to do when a line is selected. If no pattern is given, the action is applied to every line of input. If no
action is given, the default is to print the line.

In both the pattern and the action, we can refer to the entire line as $0. $1 is the first field: all text up to but not including the first
separator. $2 is the second field: all text between the first and second separators. And so on...

It is very common to use awk "one-liners" on the command-line, without actually creating an awk script file. In this case, the
awk script is the first argument to awk, usually enclosed in quotes to allow for white space and special characters. The second
argument is the input file to be processed by the script.

For example, the file /etc/passwd contains colon-separated fields including the username ($1), user ID ($3), primary group
ID ($4), full name ($5), home directory ($6), and the user’s shell program ($7). To see a list of full names for every line, we could
use the following simple command, which has no pattern (so it processes every line) and an action of printing the fifth field:

shell-prompt: awk -F : ’{ print $5 }’ /etc/passwd
Jason Bacon
D-BUS Daemon User
TCG Software Stack user
Avahi Daemon User
...

To see a list of usernames and shells:

shell-prompt: awk -F : ’{ print $1, $6 }’ /etc/passwd
bacon /bin/tcsh
messagebus /usr/sbin/nologin
_tss /usr/sbin/nologin
avahi /usr/sbin/nologin
...

Unix Users’s Guide 83 / 177

Many data files used in research computing are tabular, with one of the most popular formats being TSV (tab-separated value)
files. The General Feature Format, or GFF file is a TSV file format for describing features of a genome. The first field contains
the sequence ID (such as a chromosome number) on which the feature resides. The third field contains the feature type, such
as "gene" or "exon". The fourth and fifth fields contain the starting and ending positions withing the sequence. The ninth field
contains "attributes", such as the globally unique feature ID and possibly the feature name and other information, separated by
semicolons. If we just want to see the locations and attributes of all the genes in a genome and their names, we could use the
following:

shell-prompt: awk ’$3 == "gene" { print $1, $4, $5, $9 }’ file.gff3
1 3073253 3074322 ID=gene:ENSMUSG00000102693;Name=4933401J01Rik
1 3205901 3671498 ID=gene:ENSMUSG00000051951;Name=Xkr4
...

Suppose we want to extract specific attributes from the semicolon-separated attributes field, such as the gene ID and gene name,
as well as count the number of genes in the input. This will require a few more awk features.

The gene ID is always the first attribute in the field, assuming the feature is a gene. Not every gene has a name, so we will need
to scan the attributes for this information. Awk makes this easy. We can break the attributes field into an array of strings using
the split() function. We can then use a loop to search the attributes for one beginning with "Name=".

To count the genes in the input, we need to initialize a count variable before we begin processing the file, increment it for each
gene found, and print it after processing is finished. For this we can use the special patterns BEGIN and END, which allow us to
run an action before and after processing the input.

We will use the C-like printf() function to format the output. The basic print statement always adds a newline, so it does
not allow us to print part of a line and finish it with an subsequent print statement.

Since this is a multiline script, we will save it in a file called gene-info.awk and run it using the -f flag, which tells awk to
get the script from a file rather than the command-line.

shell-prompt: awk -f gene-info.awk file.gff3

Caution Awk can be finicky about the placement of curly braces. To avoid problems, always place the opening brace
({) for an action on the same line as the pattern.

BEGIN {
gene_count = 0;

}

$3 == "gene" {
Separate attributes into an array
split($9, attributes, ";");

Print location and feature ID
printf("%s %s %s %s", $1, $4, $5, attributes[1]);

Look for a name attribute and print it if it exists
With the for-in loop, c gets the SUBSCRIPT of each element in the
attributes array
for (c in attributes)
{

See if first 5 characters of the attribute are "Name="
if (substr(attributes[c], 1, 5) == "Name=")

printf(" %s", attributes[c]);
}

Terminate the output line

Unix Users’s Guide 84 / 177

printf("\n");

Count this gene
++gene_count;

}

END {
printf("\nGenes found = %d\n", gene_count);

}

As we can see, we can do some fairly sophisticated data processing with a very short awk script. There is very little that awk
cannot do conveniently with tabular data. If a particular task seems like it will be difficult to do with awk, don’t give up too
easily. Chances are, with a little thought and effort, you can come up with an elegant awk script to get the job done.

That said, there are always other options for processing tabular data. Perl is a scripting language especially well suited to text
processing, with its powerful RE handling capabilities and numerous features. Python has also become popular for such tasks in
recent years.

Awk is highly efficient, and processing steps performed with it are rarely a bottleneck in an analysis pipeline. If you do need better
performance than awk provides, there are C libraries that can be used to easily parse tabular data, such as libxtend. Libxtend
includes a set of DSV (delimiter-separated-value) processing functions that make it easy to read fields from files in formats like
TSV, CSV, etc. Once you have read a line or an individual field using libxtend’s DSV functions, you now have the full power and
performance of C at your disposal to process it in minimal time.

Full coverage of awk’s capabilities is far beyond the scope of this text. Readers are encouraged to explore it further via the awk
man page and one of the many books available on the language.

1.14.4 cut

The cut command is used to select columns from a file, either by byte position, character position, or like awk, delimiter-separated
columns. Note that characters in the modern world may be more than one byte, so bytes and characters are distinguished here.

To extract columns by byte or character position, we use the -b or -c option followed by a list of positions. The list is comma-
separated and may contain individual positions or ranges denoted with a ’-’. For example, to extract character positions 1 through
10 and 21 through 26 from every line of file.txt, we could use the following:

shell-prompt: cut -c 1-10,21-26 file.txt

For delimiter-separated columns, we use -d to indicate the delimiter. The default is a tab character alone, not just any white
space. The -w flag tells cut to accept any white space (tab or space) as the delimiter. The -f is then used to indicate the fields to
extract, much like -c is used for character positions. Output is separated by the same delimiter as the input.

For example, to extract the username, userid, groupid, and full name (fields 1, 3, 4, and 5) from /etc/passwd, we could use the
following:

shell-prompt: cut -d : -f 1,3-5 /etc/passwd
...
ganglia:102:102:Ganglia User
nagios:181:181:Nagios pseudo-user
webcamd:145:145:Webcamd user

The above is equivalent to the following awk command:

shell-prompt: awk -F : ’{ printf("%s:%s:%s:%s\n", $1, $3, $4, $5); }’ /etc/passwd

1.14.5 sed

The sed command is a stream editor. It makes changes to a file stream with no interaction from the user. It is probably most often
used to make simple text substitutions, though it can also do insertions and deletions of lines and parts of lines, even selecting
lines by number or based on pattern matching much like grep and awk. A basic substitution command takes the following
format:

https://github.com/outpaddling/libxtend/

Unix Users’s Guide 85 / 177

sed -e ’s|pattern|replacement|g’ input-file

Pattern is any regular expression, like those used in grep or awk. Replacement can be a fixed string, but also takes some special
characters, such as &, which represents the string matched by pattern. It can also be empty if you simply want to remove
occurrences of pattern from the text.

The characters enclosing pattern and replacement are arbitrary. The ’|’ character is often used because it stands out among most
other characters. If either pattern or replacement contains a ’|’, simply use a different separator, such as ’/’. The ’g’ after the
pattern means "global". Without it, sed will only replace the first occurrence of pattern in each line. With it, all matches are
replaced.

shell-prompt: cat fox.txt
The quick brown fox jumped over the lazy dog.
shell-prompt: sed -e ’s|fox|worm|g’ fox.txt
The quick brown worm jumped over the lazy dog.
shell-prompt: sed -e ’s/brown //g’ -e ’s|fox|&y worm|g’ fox.txt
The quick foxy worm jumped over the lazy dog.

Using -E in place of -e causes sed to support extended regular expressions.

By default, sed sends output to the standard output stream. The -i flag tells sed to edit the file in-place, i.e. replace the original
file with the edited text. This flag should be followed by a filename extension, such as ".bak". The original file will then be saved
to filename.bak, so that you can reverse the changes if you make a mistake. The extension can be an empty string, e.g. ” if you
are sure you don’t need a backup of the original.

Caution
There is a rare portability issue with sed. GNU sed requires that the extension be nestled against the -i:

shell-prompt: sed -i.bak -e ’s|pattern|replacement|g’ file.txt

Some other implementations require a space between the -i and the extension, which is more orthodox among Unix
commands:

shell-prompt: sed -i .bak -e ’s|pattern|replacement|g’ file.txt

FreeBSD’s sed accepts either form. You must be aware of this in order to ensure that scripts using sed are portable.
The safest approach is not to use the -i flag, but simply save the output to a temporary file and then move it:

shell-prompt: sed -e ’s|pattern|replacement|g’ file.txt > file.txt.tmp
shell-prompt: mv file.txt.tmp file.txt

This way, it won’t matter which implementation of sed is present when someone runs your script.

Sed is a powerful and complex tool that is beyond the scope of this text. Readers are encouraged to consult books and other
documentation to explore further.

1.14.6 sort

The sort command sorts text data line by line according to one or more keys. A key indicates a field (usually a column separated
by white space or some other delimiter) and the type of comparison, such as lexical (like alphabetical, but including non-letters)
or numeric.

If no keys are specified, sort compares entire lines lexically. The --key followed by a field number restricts comparison to that
field. Fields are numbered starting with 1. This can be used in conjunction with the --field-separator flag to specify a
separator other than the default white space. The --numeric-sort flag must be used to perform integer comparison rather
than lexical. The --general-numeric-sort flag must be used to compare real numbers.

Unix Users’s Guide 86 / 177

Shell-prompt: cat ages.txt
Bob Vila 23
Joe Piscopo 27
Al Gore 19
Ingrid Bergman 26
Mohammad Ali 22
Ram Das 9
Joe Montana 25

Shell-prompt: sort ages.txt
Al Gore 19
Bob Vila 23
Ingrid Bergman 26
Joe Montana 25
Joe Piscopo 27
Mohammad Ali 22
Ram Das 9

Shell-prompt: sort --key 2 ages.txt
Mohammad Ali 22
Ingrid Bergman 26
Ram Das 9
Al Gore 19
Joe Montana 25
Joe Piscopo 27
Bob Vila 23

Shell-prompt: sort --key 3 --numeric-sort ages.txt
Ram Das 9
Al Gore 19
Mohammad Ali 22
Bob Vila 23
Joe Montana 25
Ingrid Bergman 26
Joe Piscopo 27

The sort command can process files of any size, regardless of available memory. If a file is too large to fit in memory, it is broken
into smaller pieces, which are sorted separately and saved to temporary files. The sorted temporary files are then merged.

The uniq command, which removes adjacent lines that are identical, is often used after sorting to remove redundancy from data.
Note that the sort command also has a --unique flag, but it does not behave the same as the uniq command. The --unique
flag compares keys, while the uniq command compares entire lines.

1.14.7 tr

The tr (translate) command is a simple tool for performing character conversions and deletions in a text stream. A few examples
are shown below. See the tr man page for details.

We can use it to convert individual characters in a text stream. In this case, it takes two string arguments. Characters in the Nth
position in the first string are replaced by characters in the Nth position in the second string:

shell-prompt: cat fox.txt
The quick brown fox jumped over the lazy dog.
shell-prompt: tr ’xl’ ’gh’ < fox.txt
The quick brown fog jumped over the hazy dog.

There is limited support for character sets enclosed in square brackets [], similar to regular expressions, including predefined sets
such as [:lower:] and [:upper:]:

shell-prompt: tr ’[:lower:]’ ’[:upper:]’ < fox.txt
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

Unix Users’s Guide 87 / 177

We can use it to "squeeze" repeated characters down to one in a text stream. This is useful for compressing white space:

shell-prompt: tr -s ’ ’ < fox.txt
The quick brown fox jumped over the lazy dog.

The tr command does not support doing multiple conversions in the same command, but we can use it as a filter:

shell-prompt: tr ’[:lower:]’ ’[:upper:]’ < fox.txt | tr -s ’ ’
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

There is some overlap between the capabilities of tr, sed, awk, and other tools. Which one you choose for a given task is a matter
of convenience.

1.14.8 find

The find command is a powerful tool for not only locating path names in a directory tree, but also for taking any desired action
when a path name is found.

Unlike popular search utilities in macOS, Windows, and the Unix locate command. find does not use a previously constructed
index of the file system, but searches the file system in its current state. Indexed search utilities very quickly produce results from
a recent snapshot of the filesystem, which is rebuilt periodically by a scheduled job. This is much faster than an exhaustive search,
but will miss files that were added since the last index build. The find command will take longer to search a large directory tree,
but also guarantees accurate results.

The basic format of a find command is as follows:

shell-prompt: find top-directory search-criteria [optional-action \;]

The search-criteria can be any attribute of a file or other path name. To match by name, we use -name followed by a globbing
pattern, in quotes to prevent the shell from expanding it before passing it to find. To search for files owned by a particular user
or group, we can use -user or -group. We can also search for files with certain permissions, a minimum or maximum age,
and many other criteria. The man page provides all of these details.

The default action is to print the relative path name of each match. For example, to list all the configuration files under /etc,
we could use the following:

shell-prompt: find /etc -name ’*.conf’

We can run any Unix command in response to each match using the -exec flag followed the command and a ’;’ or ’+’. The
’;’ must be escaped or quoted to prevent the shell from using it as a command separator and treating everything after it as a new
command, separate from the find command. The name of the matched path is represented by ’{}’.

shell-prompt: find /etc -name ’*.conf’ -exec ls -l ’{}’ \;

With a ’;’ terminating the command, the command is executed immediately after each match. This may be necessary in some
situations, but it entails a great deal of overhead from running the same command many times. Replacing the ’;’ with a ’+’
tells find to accumulate as many path names as possible and pass them all to one invocation of the command. This means the
command could receive thousands of path names as arguments and will be executed far fewer times.

shell-prompt: find /etc -name ’*.conf’ -exec ls -l ’{}’ +

There are also some predefined actions we can use instead of spelling out a -exec, such as -print, which is the default
action, and -ls, which is equivalent to -exec ls -l ’{}’ +. The -print action is useful for showing path names being
processed by another action:

shell-prompt: find Data -name ’*.bak’ -print -exec rm ’{}’ +

Sometimes we may want to execute more than one command for each path matched. Rather than construct a complex and messy
-exec, we may prefer to write a shell script containing the commands and run the script using -exec. Scripting is covered in
Chapter 2.

Unix Users’s Guide 88 / 177

1.14.9 xargs

As stated earlier, most Unix commands that accept a file name as an argument will accept any number of file names. When
processing 100 files with the same program, it is usually more efficient to run one process with 100 file name arguments than to
run 100 processes with one argument each.

However, there is a limit to how long Unix commands can be. When processing many thousands of files, it may not be possible
to run a single command with all of the filenames as arguments. The xargs command solves this problem by reading a list of
file names from the standard input (which has no limit) and feeding them to another command asarguments, providing as many
arguments as possible to each process created.

The arguments processed by xargs do not have to be file names, but usually are. The main trick generating the list of files.
Suppose we want to change all occurrences of "fox" to "toad" in the files input*.txt in the CWD. Our first thought might be a
simple command:

shell-prompt: sed -i ’’ -e ’s|fox|toad|g’ input*.txt

If there are too many files matching "input*.txt", we will get an error such as "Argument list too long". One might think to solve
this problem using xargs as follows:

shell-prompt: ls *.txt | xargs sed -i ’’ -e ’s|fox|toad|g’

However, this won’t work either, because the shell hits the same argument list limit for the ls command as it does for the sed
command.

The find command can come to the rescue:

shell-prompt: find . -name ’*.txt’ | xargs sed -i ’’ -e ’s|fox|toad|g’

Since the shell is not trying to expand ’*.txt’ to an argument list, but instead passing the literal string ’*.txt’ to find, there is no
limit on how many file names it can match. The find command is sophisticated enough to work around the limits of argument
lists.

The find command above will send relative path names of every file with a name matching ’input*.txt’ in and under the CWD.
If we don’t want to process files in subdirectories of CWD, we can limit the depth of the find command to one directory level:

shell-prompt: find . -maxdepth 1 -name ’*.txt’ \
| xargs sed -i ’’ -e ’s|fox|toad|g’

Note
The xargs command places the arguments read from the standard input after any arguments included with the command. So
the commands run by xargs will have the form

sed -i ’’ -e ’s|fox|toad|g’ input1.txt input2.txt input3.txt ...

Some xargs implementations have an option for placing the arguments from the standard input before the fixed arguments, but
this is still limited. There may be cases where we want the arguments intermingled. The most portable and flexible solution to
this is writing a simple script that takes all the arguments from xargs last, and constructs the appropriate command with the
arguments in the correct order. Scripting is covered in Chapter 2.

Most xargs implementations also support running multiple processes at the same time. This provides a convenient way to utilize
multiple cores to parallelize processing. If you have a computer with 16 cores and speeding up your analysis by a factor of nearly
16 is good enough, then this can be a very valuable alternative to using an HPC cluster. If you need access to hundreds of cores
to get your work done in a reasonable time, then a cluster is a better option.

shell-prompt: find . -name ’*.txt’ \
| xargs --max-procs 8 sed -i ’’ -e ’s|fox|toad|g’

A value of 0 following --max-procs tells xargs to detect the number of available cores and use all of them.

There is a more sophisticated FOSS program called GNU parallel that can run commands in parallel in a similar way, but with
more flexibility. It can be installed via most package managers.

Unix Users’s Guide 89 / 177

1.14.10 bc

The bc (binary calculator) command is an unlimited range and precision calculator with a scripting language very similar to C.
When invoked with -l or --mathlib, it includes numerous additional functions including l(x) (natural log), e(x) (exponential),
s(x) (sine), c(x) (cosine), and a(x) (arctangent). There are numerous standard functions available even without --mathlib. See
the man page for a full list.

By default, bc prints the result of each expression evaluated followed by a newline. There is also a print statement that does not
print a newline. This allows a line of output to be constructed from multiple expressions, the last of which includes a literal "\n".

shell-prompt: bc --mathlib
sqrt(2)
1.41421356237309504880
print sqrt(2), "\n"
1.41421356237309504880
l(10)
2.30258509299404568401
x=10
5 * x^2 + 2 * x + 1
521
quit

Bc is especially useful for quick computations where extreme range or precision is required, and for checking the results from
more traditional languages that lack such range and precision. For example, consider the computation of factorials. N factorial,
denoted N!, is the product of all integers from one to N. The factorial function grows so quickly that 21! exceeds the range of
a 64-bit unsigned integer, the largest integer value supported by most CPUS and most common languages. The C program and
output below demonstrate the limitations of 64-bit integers.

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[])

{
unsigned long c, fact = 1;

for (c = 1; c <= 22; ++c)
{

fact *= c;
printf("%lu! = %lu\n", c, fact);

}
return EX_OK;

}

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000

Unix Users’s Guide 90 / 177

18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768 This does not equal 20! * 21
22! = 17196083355034583040
23! = 8128291617894825984
24! = 10611558092380307456
25! = 7034535277573963776

At 21!, an integer overflow occurs. In the limited integer systems used by computers, adding 1 to the largest possible value
produces a result of 0. The system is actually circular, which is why 21! above is wrong and 23! is actually smaller than 22!.
The limitations of computer number systems are covered in [?].

In constrast, bc can compute factorials of any size, limited only by the amount of memory needed to store the value. It is, of
course, much slower than C, both because it is an interpreted language and because it performs multiple precision arithmetic,
which requires multiple machine instructions for every math operation. However, it is more than fast enough for many purposes
and the easiest way to do math that is beyond the capabilities of common languages.

The bc script below demonstrates the the superior range of bc. The first line (#!/usr/bin/bc -l) tells the Unix shell how to run the
script, so we can run it by simply typing its name, such as ./fact.bc. This will be covered in Chapter 2. For now, create the script
using nano fact.bc and run it with bc < fact.bc.

#!/usr/bin/bc -l

fact = 1;
for (c = 1; c <= 100; ++c)
{

fact *= c;
print c, "!= ", fact, "\n";

}
quit

1!= 1
2!= 2
3!= 6
4!= 24
5!= 120
6!= 720
7!= 5040
8!= 40320
9!= 362880
10!= 3628800
11!= 39916800
12!= 479001600
13!= 6227020800
14!= 87178291200
15!= 1307674368000
16!= 20922789888000
17!= 355687428096000
18!= 6402373705728000
19!= 121645100408832000
20!= 2432902008176640000
21!= 51090942171709440000
22!= 1124000727777607680000
23!= 25852016738884976640000
24!= 620448401733239439360000
25!= 15511210043330985984000000

[Output removed for brevity]

100!= 93326215443944152681699238856266700490715968264381621468592963\
89521759999322991560894146397615651828625369792082722375825118521091\

Unix Users’s Guide 91 / 177

6864000000000000000000000000

Someone with a little knowledge of computer number systems might think that we can get around the range problem in general
purpose languages like C by using floating point rather than integers. This will not work, however. While a 64-bit floating point
number has a much greater range than a 64-bit integer (up to 10308 vs 1019 for integers), floating point actually has less precision.
It sacrifices some precision in order to achieve the greater range. The modified C code and output below show that the double
(64-bit floating point) type in C only gets us to 22!, and round-off error corrupts 23! and beyond.

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[])

{
double c, fact = 1;

for (c = 1; c <= 25; ++c)
{

fact *= c;
printf("%0.0f! = %0.0f\n", c, fact);

}
return EX_OK;

}

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884978212864
24! = 620448401733239409999872
25! = 15511210043330986055303168

1.14.11 tar

TBD

1.14.12 gzip, bzip2, xz

TBD xz can be a bottleneck in pipelines when used with default options. Try lowering the compression until it is able to keep up
with other processing steps (-4, -3, -2). It will still likely provide better compression than gzip.

Unix Users’s Guide 92 / 177

1.14.13 zip, unzip

TBD

1.14.14 time

TBD

1.14.15 top

TBD

1.14.16 iostat

TBD

1.14.17 netstat

TBD

1.14.18 iftop

TBD

1.14.19 curl, fetch, wget

TBD

Unix Users’s Guide 93 / 177

1.14.20 Practice

Instructions

1. Make sure you are using the latest version of this document.

2. Carefully read one section of this document and casually read other material (such as corresponding sections in a
textbook, if one exists) if needed.

3. Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

4. Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory
and understanding. Copying does not, and demonstrates a lack of interest in learning.

5. Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE VERY BEST OF YOUR ABILITY.
In doing so, you would only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

Important notes:

• Show all your work. This will improve your understanding and ensure full credit for the homework.

• The practice problems are designed to make you think about the topic, starting from basic concepts and progressing through
real problem solving.

• Try to verify your own results. In the working world, no one will be checking your work. It will be entirely up to you to ensure
that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

1. What is a regular expression? Is it the same as a globbing pattern?

2. How can we show lines in analysis.c containing hard-coded floating point constants?

3. How can we speed up grep searches when searching for a fixed string rather than an RE pattern?

4. How can we use extended REs with grep?

5. How can we make the matched pattern visible in the grep output?

6. Describe two major differences between grep and awk.

7. How does awk compare to spreadsheet programs like LibreOffice Calc and MS Excel?

8. The /etc/group file contains colon-separated lines in the form groupname:password:groupid:members. Show an awk com-
mand that will print the groupid and members of the group "root".

9. A GFF3 file contains tab-separated lines in the form "seqid source feature-type start end score strand phase attributes". The
first attribute for an exon feature is the parent sequence ID. Write an awk script that reports the seqid, start, end, strand,
and parent for each feature of type "exon". It should also report the number of exons and the number of genes. To test your
script, download Mus_musculus.GRCm39.107.chromosome.1.gff3.gz from ensembl.org and then do the following:

gunzip Mus_musculus.GRCm39.107.chromosome.1.gff3.gz
awk -f your-script.awk Mus_musculus.GRCm39.107.chromosome.1.gff3

10. Show a cut command roughly equivalent to the following awk command, which processes a tab-separated GFF3 file.

awk ’{ print $1, $3, $4, $5 }’ file.gff3

http://ftp.ensembl.org/pub/release-107/gff3/mus_musculus/Mus_musculus.GRCm39.107.chromosome.1.gff3.gz

Unix Users’s Guide 94 / 177

11. Show a sed command that replaces all occurrences of "wolf" with "werewolf" in the file halloween-list.txt.

12. Show a command to sort the following data by height. Show a separate command to sort by weight. The data are in
params.txt.

ID Height Weight
1 34 10
2 40 14
3 29 9
4 28 11

13. Show a Unix command that replaces the word "fox" with "toad" and converts all lower case letters to upper case in the file
fox.txt. Output should be stored in big-toad.txt.

14. Show a Unix command that lists and removes all the files whose names end in ’.o’ in and under ~/Programs.

15. Why is the xargs command necessary?

16. Show a Unix command that removes all the files with names ending in ".tmp" only in the CWD, assuming that there are
too many of them to provide as arguments to one command. The user should not be prompted for each delete. (Check the
rm man page if needed.)

17. Show a Unix command that processes all the files named ’input*’ in the CWD, using as many cores as possible, through a
command such as the following:

analyze --limit 5 input1 input2

18. What is the most portable and flexible way to use xargs when the arguments it provides to the command must precede
some of the fixed arguments?

19. What is the major advantage of the bc calculator over common programming languages?

20. Show a bc expression that prints the value of the natural number, e.

21. Write a bc script that prints the following. Create the script with nano sqrt.bc and run it with bc < sqrt.bc.

sqrt(1) = 1.00000000000000000000
sqrt(2) = 1.41421356237309504880
sqrt(3) = 1.73205080756887729352
sqrt(4) = 2.00000000000000000000
sqrt(5) = 2.23606797749978969640
sqrt(6) = 2.44948974278317809819
sqrt(7) = 2.64575131106459059050
sqrt(8) = 2.82842712474619009760
sqrt(9) = 3.00000000000000000000
sqrt(10) = 3.16227766016837933199

1.15 File Transfer

Many users will need to transfer data between other computers and a remote Unix system. For example, users of a shared research
computer running Unix will need to transfer input data from their computer to the Unix machine, run the research programs, and
finally transfer results back to their computer. There are many software tools available to accomplish this. Some of the more
convenient tools are described below.

Unix Users’s Guide 95 / 177

1.15.1 File Transfers from Unix

sftp (Secure File Transfer Protocol) is often used to remotely log into another machine on the network and transfer files to or
from it. Not all remote Unix systems have sftp enabled.

shell-prompt: sftp [name@]host

shell-prompt: sftp joe@unixdev1.ceas.uwm.edu

For Unix (including Mac and Cygwin) users, the recommended method for transferring files is the rsync command. The rsync
command is a simple but intelligent tool that makes it easy to synchronize two directories on the same machine or on different
machines across a network. Rsync is free software and part of the base installation of many Unix systems including Mac OS X.
On Cygwin, you can easily add the rsync package using the Cygwin Setup utility.

Rsync has two major advantages over other file transfer programs:

• If you have transferred the directory before, and only want to update it, rsync will automatically determine the differences
between the two copies and only transfer what is necessary. When conducting research that generates large amounts of data,
this can save an enormous amount of time.

• If a transfer fails for any reason (which is more likely for large transfers), rsync’s inherent ability to determine the differences
between two copies allows it to resume from where it left off. Simply run the exact same rsync command again, and the transfer
will resume.

The rsync command can either push (send) files from the local machine to a remote machine, or pull (retrieve) files from a remote
machine to the local machine. The command syntax is basically the same in both cases. It’s just a matter of how you specify the
source and destination for the transfer.

The rsync command has many options, but the most typical usage is to create an exact copy of a directory on a remote system.
The general rsync command to push files to another host would be:

shell-prompt: rsync -av --delete source-path [username@]hostname:[destination-path]

Example 1.4 Pushing data with rsync
The following command synchronizes the directory Project from the local machine to ~joeuser/Data/Project on Peregrine:

shell-prompt: rsync -av --delete Project joeuser@unixdev1.ceas.uwm.edu:Data

The general syntax for pulling files from another host is:

shell-prompt: rsync -av --delete [username@]hostname:[source-path] destination-path

Example 1.5 Pulling data with rsync
The following command synchronizes the directory ~joeuser/Data/Project on Peregrine to ./Project on the local machine:

shell-prompt: rsync -av --delete joeuser@unixdev1.ceas.uwm.edu:Data/project .

If you omit "username@" from the source or destination, rsync will try to log into the remote system with your username on the
local system.

If you omit destination-path from a push command or source-path from a pull command, rsync will use your home directory on
the remote host.

The command-line flags used above have the following meanings:

-a Use archive mode. Archive mode copies all subdirectories recursively and preserves as many file attributes as possible, such
as ownership, permissions, etc.

Unix Users’s Guide 96 / 177

-v Verbose copy: Display names of files and directories as they are copied.

--delete Delete files and directories from the destination if they do not exists in the source. Without --delete, rsync will add and
replace files in the destination, but never remove anything.

Caution
Note that a trailing “/” on source-path affects where rsync stores the files on the destination system. Without a trailing
“/”, rsync will create a directory called “source-path” under “destination-path” on the destination host.
With a trailing “/” on source-path, destination-path is assumed to be the directory that will replace source-path on the
destination host. This feature is a somewhat cryptic method of allowing you to change the name of the directory during
the transfer. However, it is compatible with the basic Unix cp command.
Note also that the trailing “/” only affects the command when applied to source-path. A trailing “/” on destination-path
has no effect.

The command below creates an identical copy of the directory Data/Model in Model (/home/bacon/Data/Model to be precise)
on unixdev1.ceas.uwm.edu. The resulting directory is the same regardless of whether the destination directory existed before the
command or not.

shell-prompt: rsync -av --delete Model joeuser@unixdev1.ceas.uwm.edu:Data

The command below dumps the contents of Model directly into Data, and deletes everything else in the Data directory! In other
words, it makes the destination directory Data identical to the source directory Model.

shell-prompt: rsync -av --delete Model/ joeuser@unixdev1.ceas.uwm.edu:Data

To achieve the same effect as the command with no “/”, you would need to fully specify the destination path:

shell-prompt: rsync -av --delete Model/ joeuser@unixdev1.ceas.uwm.edu:Data/Model

Note that if using globbing on the remote system, any globbing patterns must be protected from expansion by the local shell by
escaping them or enclosing them in quotes. We want the pattern expanded on the remote system, not the local system:

shell-prompt: rsync -av --delete joeuser@unixdev1.ceas.uwm.edu:Data/Study* .
shell-prompt: rsync -av --delete ’joeuser@unixdev1.ceas.uwm.edu:Data/Study*’ .

For full details on the rsync command, type

shell-prompt: man rsync

1.16 Environment Variables

Every Unix process maintains a list of character string variables called the environment. When a new process is created, it inherits
the environment from the process that created it (its parent process).

Since the shell creates a new process whenever you run an external command, the shell’s environment can be used to pass
information down to any command that you run. For example, text editors and other programs that manipulate the full terminal
screen need to know what type of terminal you are using. Different types of terminals use different magic sequences to move the
cursor, clear the screen, scroll, etc. To provide this information, we set the shell’s environment variable TERM to the terminal
type (usually "xterm"). When you run a command from the shell, it inherits the shell’s TERM variable, and therefore knows the
correct magic sequences for your terminal.

The printenv shows all of the environment variables currently set in your shell process.

shell-prompt: printenv

Unix Users’s Guide 97 / 177

Setting environment variables requires a different syntax depending on which shell you are using. Most modern Unix shells are
extensions of either Bourne shell (sh) or C shell (csh), so there are only two variations of most shell commands that we need to
know for most purposes.

For Bourne shell derivatives, we use the export command:

shell-prompt: TERM=xterm
shell-prompt: export TERM

For C shell derivatives, we use setenv:

shell-prompt: setenv TERM xterm

The PATH variable specifies a list of directories containing external Unix commands. When you type a command at the shell
prompt, the shell checks the directories listed in PATH in order to find the command you typed. For example, when you type the
ls command, the shell utilizes PATH to locate the program in /bin/ls.

The directory names within in PATH are separated by colons. A simple value for PATH might be /bin:/usr/bin:/usr/
local/bin. When you type ls, the shell first checks for the existence of /bin/ls. If it does not exist, the shell then checks
for /usr/bin/ls, and so on, until it either finds the program or has checked all directories in PATH. If the program is not
found, the shell issues an error message such as "ls: Command not found".

Environment variables can be set from the shell prompt using the export command in Bourne shell and its derivatives (sh, bash,
ksh):

shell-prompt: export PATH=’/bin:/usr/bin:/usr/local/bin’

or using setenv in C shell and its derivatives (csh, tcsh):

shell-prompt: setenv PATH ’/bin:/usr/bin:/usr/local/bin’

The env can be used to alter the environment just for the invocation of one child process, rather than setting it for the current
shell process.

Suppose Bob has a script called rna-trans that we would like to run in his ~/bin directory. This script also invokes other scripts
in the same directory, so we’ll need it in our path while his script runs.

shell-prompt: env PATH=’/bin:/usr/bin:/usr/local/bin:~bob/bin’ rna-trans

You can create environment variables with any name and value you like. However, there are some environment variable names
that are reserved for specific purposes. A few of the most common ones are listed in Table 1.13.

Name Purpose
TERM Terminal type for an interactive shell session
USER User’s login name
HOME Absolute path of the user’s home directory (~)
PATH List of directories searched for commands
LANG Character set for the local language
EDITOR User’s preferred interactive text editor

Table 1.13: Reserved Environment Variables

1.16.1 Self-test

1. What are environment variables?

2. Does a Unix process have any environment variables when it starts? If so, where do they come from?

3. How can environment variables be used to communicate information to child processes?

Unix Users’s Guide 98 / 177

4. Describe one common environment variable that it typically set by the shell and used by processes running under the shell.

5. Show how to set the environment variable TERM to the value "xterm" in

(a) Bourne shell (sh)

(b) Korn shell (ksh)

(c) Bourne again shell (bash)

(d) C shell (csh)

(e) T-shell (tcsh)

6. Show a Unix command that runs ls with the LSCOLORS environment variable set to "CxFxCxDxBxegedaBaGaCaD".
You may not change the LSCOLORS variable for the current shell process.

1.17 Shell Variables

In addition to the environment, shells maintain a similar set of variables for their own use. These variables are not passed down
to child processes, and are only used by the shell.

Shell variables can be arbitrary, but each shell also treats certain variable names specially. One common example is the shell
variable that stores the shell prompt.

In Bourne-shell derivatives, this variable is called PS1. To set a shell variable in Bourne-shell derivatives, we use a simple
assignment. (The export command above actually sets a shell variable called TERM and then exports it to the environment.)

shell-prompt: PS1="peregrine: "

In C shell derivatives, the variable is called prompt, and is set using the set command:

shell-prompt: set prompt="peregrine: "

Note The syntax for set is slightly different than for setenv. Set uses an ’=’ while setenv uses a space.

Shell prompt variables may contain certain special symbols that represent dynamic information they you might want to include
in your shell prompt, such as the host name, command counter, current working directory, etc. Consult the documentation for
your shell for details.

In all shells, you can view the current shell variables by typing set with no arguments:

shell-prompt: set

1.17.1 Self-test

1. Show how to set the shell prompt to "Peregrine: " in:

(a) Bourne shell

(b) C shell

2. How can you view a list of all current shell variables and their values?

Unix Users’s Guide 99 / 177

1.18 Process Control

Unix systems provide many tools for managing and monitoring processes that are already running.

Note that these tools apply to local Unix processes only. On distributed systems such as clusters and grids, job management is
done using networked schedulers such as HTCondor, Grid Engine, or PBS.

It is possible to have multiple processes running under the same shell session. Such processes are considered either foreground
processes or background processes. The foreground process is simply the process that receives the keyboard input. There can be
no more than one foreground process under a given shell session, for obvious reasons.

Note that all processes, both foreground and background, can send output to the terminal at the same time, however. It is up to
the user to ensure that output is managed properly and not intermixed.

There are three types of tools for process management, described in the following subsections.

1.18.1 External Commands

Unix systems provide a variety of external commands that monitor or manipulate processes based on their process ID (PID). A
few of the most common commands are described below.

ps lists the currently running processes.

shell-prompt: ps [-a] # BSD
shell-prompt: ps [-e] # SYSV

ps is one of the rare commands whose options vary across different Unix systems. There are only two standards to which it
may conform, however. The BSD version uses -a to indicate that all processes (not just your own) should be shown. System 5
(SYSV) ps uses -e for the same purpose. Run man ps on your system to determine which flags should be used.

kill sends a signal to a process (which may kill the process, but could serve other purposes).

shell-prompt: kill [-#] pid

The pid (process ID) is determined from the output of ps.

The signal number is an integer value following a -, such as -9. If not provided, the default signal sent is the TERM (terminate)
signal.

Some processes ignore the TERM signal. Such processes can be force killed using the KILL (9) signal.

shell-prompt: kill -9 2342

Run man signal to learn about all the signals that can be issued with kill.

shell-prompt: ps
PID TT STAT TIME COMMAND

41167 0 Is 0:00.25 tcsh
78555 0 S+ 0:01.98 ape unix.dbk

shell-prompt: kill 78555

The pkill command will kill all processes running the program named as the argument. This eliminates the need to find the PID
first, and is more convenient for killing multiple processes running the same program.

shell-prompt: pkill fdtd

Unix Users’s Guide 100 / 177

1.18.2 Special Key Combinations

Ctrl+c sends a terminate signal to the current foreground process. This usually kills the process immediately, although it is
possible that some processes will ignore the signal.

Ctrl+z sends a suspend signal to the current foreground process. The process remains in memory, but does not execute further
until it receives a resume signal (usually sent by running fg).

Ctrl+s suspends output to the terminal. This does not technically control the process directly, but has the effect of blocking any
processes that are sending output, since they will stop running until the terminal begins accepting output again.

Ctrl+q resumes output to the terminal if it has been suspended.

1.18.3 Internal Shell Commands and Symbols

jobs lists the processes running under the current shell, but using the shell’s job IDs instead of the system’s process IDs.

Caution Shell jobs are ordinary processes running on the local system and should not be confused with cluster and
grid jobs, which are managed by networked schedulers.

shell-prompt: jobs

fg brings a background job into the foreground.

shell-prompt: fg [%job-id]

There cannot be another job already running in the foreground. If no job ID is provided, and multiple background jobs are
running, the shell will choose which background job to bring to the foreground. A job ID should always be provided if more than
one background job is running.

bg resumes a job suspended by Ctrl+z in the background.

shell-prompt: prog
Ctrl+z
shell-prompt: bg
shell-prompt:

An & at the end of any command causes the command to be immediately placed in the background. It can be brought to the
foreground using fg at any time.

shell-prompt: command &

nice runs a process at a lower than normal priority.

shell-prompt: nice command

If (and only if) other processes in the system are competing for CPU time, they will get a bigger share than processes run under
nice.

time runs a command under the scrutiny of the time command, which keeps track of the process’s resource usage.

shell-prompt: time command

There are both internal and external implementations of the time command. Run which time to determine which one your shell
is configured to use.

nohup allows you to run a command that will continue after you log out. Naturally, all input and output must be redirected away
from the terminal in order for this to work.

Bourne shell and compatible:

Unix Users’s Guide 101 / 177

shell-prompt: nohup ./myprogram < inputfile > outputfile 2>&1

C shell and compatible:

shell-prompt: nohup ./myprogram < inputfile >& outputfile

This is often useful for long-running commands and where network connections are not reliable.

There are also free add-on programs such as GNU screen that allow a session to be resumed if it’s disrupted for any reason.

1.18.4 Self-test

1. What is a process?

2. What is the difference between a foreground process and a background process?

3. How many foreground processes can be running at once under a single shell process? Why?

4. How many background processes can be running at once under a single shell process? Why?

5. Show the simplest Unix command that will accomplish each of the following:

(a) List all processes currently running.
(b) List processes owned by you.
(c) Kill the process with ID 7243.
(d) Kill all processes running the program netsim.
(e) Kill the process with ID 7243 after the first attempt failed.

6. How do you perform each of the following tasks?

(a) Kill the current foreground process.
(b) Suspend the current foreground process.
(c) Resume a suspended process in the foreground.
(d) Resume a suspended process in the background.
(e) Start a new process, placing it in the background immediately.
(f) Suspend terminal output for a process without suspending the process itself.
(g) Resume suspended terminal output.
(h) List the currently running jobs as seen by the shell.
(i) Return job #2 to the foreground.
(j) Run the program netsim at a reduced priority so that other processes will respond faster.
(k) Run the program netsim and report the CPU time used when it finishes.

1.19 Remote Graphics

Most users will not need to run graphical applications on a remote Unix system.. If you know that you will need to use a graphical
user interface with your research software, or if you want to use a graphical editor such as gedit or emacs on over the network,
read on. Otherwise, you can skip this section for now.

Unix uses a networked graphics interface called the X Window system. It is also sometimes called simply X11 for short. (X11 is
the latest major version of the system.) X11 allows programs running on a Unix system to display graphics on the local screen or
the screen of another Unix system on the network. The programs are called clients, and they display graphical output by sending
commands to the X11 server on the machine where the output is to be displayed. Hence, your local computer must be running an
X11 server in order to display Unix graphics, regardless of whether the client programs are running on your machine or another.

Some versions of OS X had the Unix X11 API included, while others need it installed separately. At the time of this writing,
X11 on the latest OS X is provided by the XQuartz project, described at https://support.apple.com/en-us/HT201341. You will
need to download and install this free package to enable X11 on your Mac.

https://support.apple.com/en-us/HT201341

Unix Users’s Guide 102 / 177

1.19.1 Configuration Steps Common to all Operating Systems

Modern Unix systems such as BSD, Linux, and Mac OS X have most of the necessary tools and configuration in place for running
remote graphical applications.

However, some additional steps may be necessary on your computer to allow remote systems to access your display. This applies
to all computers running an X11 server, regardless of operating system. Some additional steps that may be necessary for Cygwin
systems are discussed in Section 1.19.2.

If you want to run graphical applications on a remote computer over an ssh connection, you will need for forward your local
display to the remote system. This can be done for a single ssh session by providing the -X flag:

shell-prompt: ssh -X joe@unixdev1.ceas.uwm.edu

This causes the ssh command to inform the remote system that X11 graphical output should be sent to your local display through
the ssh connection. (This is called SSH tunneling.)

Caution Allowing remote systems to display graphics on your computer can pose a security risk. For example, a remote
user may be able to display a false login window on your computer in order to collect login and password information.

If you want to forward X11 connections to all remote hosts for all users on the local system, you can enable X11 forwarding in
your ssh_config file (usually found in /etc or /etc/ssh) by adding the following line:

ForwardX11 yes

Caution Do this only if you are prepared to trust all users of your local system as well as all remote systems to which
they might connect.

Some X11 programs require additional protocol features that can pose more security risks to the client system. If you get an
error message containing "Invalid MIT-MAGIC-COOKIE" when trying to run a graphical application over an ssh connection,
try using the -Y flag with ssh to open a trusted connection.

shell-prompt: ssh -Y joe@unixdev1.ceas.uwm.edu

You can establish trusted connections to all hosts by adding the following to your ssh_config file:

ForwardX11Trusted yes

Caution This is generally considered a bad idea, since it states that every host connected to from this computer to
should be trusted completely. Since you don’t know in advance what hosts people will connect to in the future, this is a
huge leap of faith.

If you are using ssh over a slow connection, such as home DSL/cable, and plan to use X11 programs, it can be very helpful
to enable compression, which is enabled by the -C flag. Packets are then compressed before being sent over the wire and
decompressed on the receiving end. This adds more CPU load on both ends, but reduces the amount of data flowing over the
network and may significantly improve the responsiveness of a graphical user interface. Run man ssh for details.

shell-prompt: ssh -YC joe@unixdev1.ceas.uwm.edu

Unix Users’s Guide 103 / 177

1.19.2 Graphical Programs on Windows with Cygwin

It is possible for Unix graphical applications on the remote Unix machine to display on a Windows machine, but this will require
installing additional Cygwin packages and performing a few configuration steps on your computer in addition to those discussed
in Section 1.19.1.

Installation

You will need to install the x11/xinit and x11/xhost packages using the Cygwin setup utility. This will install an X11 server on
your Windows machine.

Configuration

After installing the Cygwin X packages, there are additional configuration steps:

1. Create a working ssh_config file by running the following command from a Cygwin shell window:

shell-prompt: cp /etc/defaults/etc/ssh_config /etc

2. Then, using your favorite text editor, update the new /etc/ssh_config as described in Section 1.19.1.

3. Add the following line to .bashrc or .bash_profile (in your home directory):

export DISPLAY=":0.0"

Cygwin uses bash for all users by default. If you are using a different shell, then edit the appropriate start up script instead
of .bashrc or .bash_profile.

This is not necessary when running commands from an xterm window (which is launched from Cygwin-X), but is necessary
if you want to launch X11 applications from a Cygwin bash terminal which is part of the base Cygwin installation, and not
X11-aware.

Start-up

To enable X11 applications to display on your Windows machine, you need to start the X11 server on Windows by clicking
Start → All Programs → Cygwin-X → XWin Server. The X server icon will appear in your Windows system tray to indicate
that X11 is running. You can launch an xterm terminal emulator from the system tray icon, or use the Cygwin bash terminal,
assuming that you have set your DISPLAY variable.

1.20 Where to Learn More

There is a great deal of information available on the web. There are also many length books dedicated to Unix, which can provide
more detail than this tutorial.

If you simply want to know what commands are available on your system, list the bin directories!

shell-prompt: ls /bin /usr/bin /usr/local/bin | more

Unix Users’s Guide 104 / 177

Chapter 2

Unix Shell Scripting

Before You Begin
Before reading this chapter, you should be familiar with basic Unix concepts (Chapter 1) and the Unix shell (Section 1.3.3).

2.1 What is a Shell Script?

A shell script is essentially a file containing a sequence of Unix commands. A script is a type of program, but is distinguished
from other programs in that it represents programming at a higher level.

While a typical program is largely made of calls to subprograms, a script contains invocations of whole programs.

In other words, a script is a way of automating the execution of multiple separate programs in sequence.

The Unix command-line structure was designed to be convenient for both interactive use and for programming in scripts. Running
a Unix command is much like calling a subprogram. The difference is just syntax. A subprogram call in C encloses the arguments
in parenthesis and separates them with commas:

function_name(arg1,arg2,arg3);

A Unix command is basically the same, except that it uses spaces instead of parenthesis and commas:

command_name arg1 arg2 arg3

2.1.1 Self-test

1. What is a shell script?

2. How are Unix commands similar to and different from subprogram calls in a language like C?

2.2 Scripts vs Programs

It is important to understand the difference between a "script" and a "real program", and which languages are appropriate for
each.

Scripts tend to be small (no more than a few hundred or a few thousand lines of code) and do not do any significant computation
of their own.

Instead, scripts run "real programs" to do most of the computational work. The job of the script is simply to automate and
document the process of running programs.

Unix Users’s Guide 105 / 177

As a result, scripting languages do not need to be efficient and are generally interpreted rather than compiled. (Interpreted lan-
guage programs run an order of magnitude or more slower than equivalent compiled programs, unless most of their computation
is done by built-in, compiled subprograms.)

Real programs may be quite large and may implement complex computational algorithms. Hence, they need to be fast and as a
result are usually written in compiled languages.

If you plan to use exclusively pre-existing programs such as Unix commands and/or add-on application software, and need only
automate the execution of these programs, then you need to write a script and should choose a good scripting language.

If you plan to implement your own algorithm(s) that may require a lot of computation, then you need to write a program and
should select an appropriate compiled programming language.

2.2.1 Self-test

1. How do scripts differ from programs written in languages like C or Fortran?

2. Why would it not be a good idea to write a matrix multiplication program as a Bourne shell script?

2.3 Why Write Shell Scripts?

2.3.1 Efficiency and Accuracy

Any experienced computer user knows that we often end up running basically the same sequence of commands many times over.
Typing the same sequence of commands over and over is a waste of time and highly prone to errors.

All Unix shells share a feature that can help us avoid this repetitive work: They don’t care where their input comes from.

It is often said that the Unix shell reads commands from the keyboard and executes them. This is not really true. The shell reads
commands from any input source and executes them. The keyboard is just one common input source that can be used by the
shell. Ordinary files are also very commonly used as shell input.

Recall from Chapter 1 that Unix systems employ device independence, which means that any Unix program that reads from a
keyboard can also read the same input from a file or any other input device.

Hence, if we’re going to run the same sequence of commands more than once, we don’t need to retype the sequence each time.
The shell can read the commands from anywhere, not just from the keyboard. We can put those commands into a text file once
and tell the shell to read the commands from the file, which is much easier than typing them all again.

Rule of Thumb If you might have to do it again, script it.

In theory, Unix commands could also be piped in from another program or read from any other device attached to a Unix system,
although in practice, they usually come from the keyboard or a script file.

Self-test

1. Describe two reasons for writing shell scripts.

2. Are there Unix commands that you can run interactively, but not from a shell script? Explain.

3. What feature of Unix makes shell scripts so convenient to implement?

4. What is a good rule of thumb for deciding whether to write a shell script?

Unix Users’s Guide 106 / 177

2.3.2 Documentation

There is another very good reason for writing shell scripts in addition to saving us a lot of redundant typing:

A shell script is the ultimate documentation of the work we have done on a computer.

By writing a shell script, we record the exact sequence of commands needed to reproduce results, in perfect detail. Hence, the
script serves a dual purpose of automating and documenting our processes.

Developing a script has a ratchet effect on your knowledge. Once you add a command to a script, you will never forget how to
use it for that task.

Rule of Thumb A Unix user should never find themselves trying to remember how they did something. Script it the first time...

Clear documentation of our work flow is important in order to justify research funding and to be able to reproduce results months
or years later.

Note
An important part of documenting code is making the code self-documenting. When writing shell scripts, using long options in
commands such as zip --preserve-case instead of zip -C makes the script much easier to read. While -C is less typing and
may be preferable when running zip interactively many times, we only have to type --preserve-case once when writing
the script, so the laziness of using -C doesn’t pay here.

Imagine that we instead decided to run our sequence of commands manually and document what we did in a word processor.
First, we’d be typing everything twice: Once at the shell prompt and again into the document.

The process of typing the same commands each time would be painful enough, but to document it in detail while we do it would
be distracting. We’d also have to remember to update the document every time we type a command differently. This is hard to
do when we’re trying to focus on getting results.

Writing a shell script allows us to stay focused on perfecting the process. Once the script is finished and working perfectly,
we have the process perfectly documented. We can and should add comments to the script to make it more readable, but even
without comments, the script itself preserves the process in detail.

Many experienced users will never run a processing command from the keyboard. Instead, they only put commands into a script
and run and re-run the script until it’s finished.

Self-test

1. Describe another good reason for writing shell scripts.

2. Why is it so important to document the sequence of commands used?

2.3.3 Why Unix Shell Scripts?

There are many scripting languages to choose from, including those used on Unix systems, like Bourne shell, C shell, Perl,
Python, etc., as well as some languages confined to other platforms like Visual Basic (Microsoft Windows only) and AppleScript
(Apple only).

Note that the Unix-based scripting languages can be used on any platform, including Microsoft Windows (with Cygwin, for
example) and Apple’s Mac OS X, which is Unix-compatible out of the box.

Once you learn to write Unix shell scripts, you’re prepared to do scripting on any computer, without having to learn another
language.

Unix Users’s Guide 107 / 177

Self-test

1. What are two advantages of writing Unix shell scripts instead of using a scripting language such as Visual Basic or
AppleScript?

2.3.4 Self-test

1. Describe three reasons for writing shell scripts instead of running commands from the keyboard.

2.4 Which Shell?

2.4.1 Common Shells

When writing a shell script, there are essentially two scripting languages to choose from: Bourne shell and C shell. These were
the first two popular shells for Unix, and all common shells that have come since are compatible with one or the other.

The most popular new shells are Bourne Again shell (bash), which is an extension of Bourne shell, Korn shell (ksh), which is
another extension of Bourne shell, Z-shell, a very sophisticated extension of Bourne shell, and T-shell (TENEX C shell, tcsh),
which is an extended C shell.

• Bourne shell family

– Bourne shell (sh)

– Bourne-again shell (bash)

– Korn shell (ksh)

– Z-shell (zsh)

• C shell family

– C shell (csh)

– T-shell (tcsh)

Both Bourne shell and C shell have their own pros and cons. C shell syntax is cleaner, more intuitive, and more similar to the C
programming language (hence the name C shell). However, C shell lacks some features such as subprograms (although C shell
scripts can run other C shell scripts, which is arguably a better approach in many situations).

Bourne shell is used almost universally for Unix system scripts, while C shell is fairly popular in scientific research.

Note Every Unix system has a Bourne shell in /bin/sh. Hence, using vanilla Bourne shell (not bash, ksh, or zsh) for scripts
maximizes their portability by ensuring that they will run on any Unix system without the need to install any additional shells.

If your script contains only external commands, then it actually won’t matter which shell runs it. However, most scripts utilize
the shell’s internal commands, control structures, and features like redirection and pipes, which differ among shells.

More modern shells such as bash, ksh, and tcsh, are backward-compatible with Bourne shell or C shell, but add additional
scripting constructs in addition to convenient interactive features. The details are beyond the scope of this text. For full details,
see the documentation for each shell.

2.4.2 Self-test

1. What is one advantage of Bourne shell over C shell?

2. What is one advantage of C shell over Bourne shell?

Unix Users’s Guide 108 / 177

2.5 Writing and Running Shell Scripts

A shell script is a simple text file and can be written using any Unix text editor. Some discussion of Unix text editors can be
found in Section 1.10.4.

Caution Recall from Section 1.9.1 that Windows uses a slightly different text file format than Unix. Hence, editing Unix
shell scripts in a Windows editor can be problematic. Users are advised to do all of their editing on a Unix machine
rather than write programs and scripts on Windows and transfer them to Unix.

Shell scripts often contain very complex commands that are wider than a typical terminal window. A command can be continued
on the next line by typing a backslash (\) immediately before pressing Enter. This feature is present in all Unix shells. Of course,
it can be used on an interactive CLI as well, but is far more commonly used in scripts to improve readability.

printf "%s %s\n" "This command is too long to fit in a single 80-column" \
"terminal window, so we break it up with a backslash."

It’s not a bad idea to name the script with a file name extension that matches the shell it uses. This just makes it easier to see which
shell each of your script files use. Table 2.1 shows conventional file name extensions for the most common shells. However, if a
script is to be installed into the PATH so that it can be used as a regular command, it is usually given a name with no extension.
Most users would rather type "cleanup" than "cleanup.bash".

Like all programs, shell scripts should contain comments to explain what the commands in it are doing. In all Unix shells,
anything from a ’#’ character to the end of a line is considered a comment and ignored by the shell.

Print the name of the host running this script
hostname

Shell Extension
Bourne Shell .sh
C shell .csh
Bourne Again Shell .bash
T-shell .tcsh
Korn Shell .ksh
Z-shell .zsh

Table 2.1: Conventional script file name extensions

Unix Users’s Guide 109 / 177

Practice Break
Using your favorite text editor, enter the following text into a file called hello.sh.

1. The first step is to create the file containing your script, using any text editor, such as nano:

shell-prompt: nano hello.sh

Once in the text editor, add the following text to the file:

printf "Hello!\n"
printf "I am a script running on a computer called ‘hostname‘\n"

After typing the above text into the script, save the file and exit the editor. If you are using nano, the menu at the bottom
of the screen tells you how to save (write out, Ctrl+o) and exit (Ctrl+x).

2. Once we’ve written a script, we need a way to run it. A shell script is simply input to a shell program. Like many Unix
programs, shells take their input from the standard input by default. We could, therefore, use redirection to make it read
the file via standard input:

shell-prompt: sh < hello.sh

Sync-point: Instructor: Make sure everyone in class succeeds at this exercise before moving on.

Since the shell normally reads commands from the standard input, the above command will "trick" sh into reading its commands
from the file hello.sh.

However, Unix shells and other scripting languages provide a more convenient method of indicating what program should
interpret them. If we add a special comment, called a shebang line to the top of the script file and make the file executable using
chmod, the script can be executed like a Unix command. We can then simply type its name at the shell prompt, and another shell
process will start up and run the commands in the script. If the directory containing such a script is included in $PATH, then the
script can be run from any current working directory, just like ls, cp, etc.

The shebang line consists of the string "#!" followed by the full path name of the command that should be used to execute the
script, or the path /usr/bin/env followed by the name of the command. For example, both of the following are valid ways to
indicate a Bourne shell (sh) script, since /bin/sh is the Bourne shell command.

#!/bin/sh

#!/usr/bin/env sh

When you run a script as a command, by simply typing its file name at the Unix command-line, a new shell process is created to
interpret the commands in the script. The shebang line specifies which program is invoked for the new shell process that runs the
script.

Note The shebang line must begin at the very first character of the script file. There cannot even be blank lines above it or white
space to the left of it. The "#!" is an example of a magic number. Many files begin with a 16-bit (2-character) code to indicate
the type of the file. The "#!" indicates that the file contains some sort of interpreted language program, and the characters that
follow will indicate where to find the interpreter.

The /usr/bin/env method is used for add-on shells and other interpreters, such as Bourne-again shell (bash), Korn shell (ksh), and
Perl (perl). These interpreters may be installed in different directories on different Unix systems. For example, bash is typically
found in /bin/bash on Linux systems, /usr/local/bin/bash on FreeBSD systems, and /usr/pkg/bin/bash on NetBSD. The T-shell
is found in /bin/tcsh on FreeBSD and CentOS Linux and in /usr/bin/tcsh on Ubuntu Linux.

In addition, Redhat Enterprise Linux (RHEL) and CentOS users may install a newer version of bash under a different prefix and
want to use it to run their shell scripts. RHEL is a special Linux distribution built on an older snapshot of Linux for the sake of

Unix Users’s Guide 110 / 177

long-term binary compatibility and stability. As such, it runs older versions of bash and other common tools. As of this writing,
CentOS 7, the mainstream CentOS version, uses bash 4.2, while pkgsrc, a portable package manager offers bash 5.1.

The env command is found in /usr/bin/env on virtually all Unix systems. Hence, this provides a method for writing shell
scripts that are portable across Unix systems (i.e. they don’t need to be modified to run on different Unix systems).

Bourne shell (sh) is present and installed in /bin on all Unix-compatible systems, so it’s safe to hard-code #!/bin/sh is the
shebang line.

C shell (csh) is not included with all systems, but is virtually always in /bin if present, so it is generally safe to use #!/bin/csh as
well.

For all other interpreters it’s best to use #!/usr/bin/env.

#!/bin/sh (OK and preferred)

#!/bin/csh (Generally OK)

#!/bin/bash (Bad idea: Not portable)

#!/usr/bin/perl (Bad idea: Not portable)

#!/usr/bin/python (Bad idea: Not portable)

#!/bin/tcsh (Bad idea: Not portable)

#!/usr/bin/env bash (This is portable)

#!/usr/bin/env tcsh (This is portable)

#!/usr/bin/env perl (This is portable)

#!/usr/bin/env python (This is portable)

Even if your system comes with /bin/bash and you don’t intend to run the script on any other system, using /usr/bin/env
is still a good idea, because you or someone else may want to use a newer version of bash that’s installed in a different location.
The same applies to other scripting languages such as C-shell, Perl, Python, etc.

Example 2.1 A Simple Bash Script
Suppose we want to write a script that is always executed by bash, the Bourne Again Shell. We simply need to add a shebang
line indicating the path name of the bash executable file.

shell-prompt: nano hello.sh

Enter the following text in the editor. Then save the file and exit back to the shell prompt.

#!/usr/bin/env bash

A simple command in a shell script
printf "Hello, world!\n"

Now, make the file executable and run it:

shell-prompt: chmod a+rx hello.sh # Make the script executable
shell-prompt: ./hello.sh # Run the script as a command

Unix Users’s Guide 111 / 177

Example 2.2 A Simple T-shell Script
Similarly, we might want to write a script that is always executed by tcsh, the TENEX C Shell. We simply need to add a shebang
line indicating the path name of the tcsh executable file.

shell-prompt: nano hello.tcsh

#!/usr/bin/env tcsh

A simple command in a shell script
printf "Hello, world!\n"

shell-prompt: chmod a+rx hello.tcsh # Make the script executable
shell-prompt: ./hello.tcsh # Run the script as a command

Note Many of the Unix commands you use regularly may actually be scripts rather than binary programs.

Note
There may be cases where you cannot make a script executable. For example, you may not own it, or the file system may not
allow executables, to prevent users from running programs where they shouldn’t.
In these cases, we can simply run the script as an argument to an appropriate shell. For example:

shell-prompt: sh hello.sh
shell-prompt: bash hello.bash
shell-prompt: csh hello.csh
shell-prompt: tcsh hello.tcsh
shell-prompt: ksh hello.ksh

Note also that the shebang line in a script is ignored when you explicitly run a shell this way. The content of the script will be
interpreted by the shell that you have manually invoked, regardless of what the shebang line says.

Scripts that you create and intend to use regularly can be placed in your PATH, so that you can run them from anywhere. A
common practice among Unix users is to create a directory called ~/bin, and configure the login environment to that this
directory is always in the PATH. Programs and scripts placed in this directory can then be used like any other Unix command,
without typing the full path name.

2.5.1 Self-test

1. What tools can be used to write shell scripts?

2. Is it a good idea to write Unix shell scripts under Windows? Why or why not?

3. After creating a new shell script, what must be done in order to make it executable like a Unix command?

4. What is a shebang line?

5. What does the shebang line look like for a Bourne shell script? A Bourne again shell script? Explain the differences.

2.6 Shell Start-up Scripts

Each time you log into a Unix machine or start a new shell (e.g. when you open a new terminal), the shell process runs one or
more special scripts called start up scripts. Some common start up scripts:

Unix Users’s Guide 112 / 177

Script Shells that use it Executed by
/etc/profile, ~/.profile Bourne shell family Login shells only
File named by $ENV (typically .shrc
or .shinit) Bourne shell family All interactive shells (login and

non-login)

~/.bashrc Bourne-again shell only All interactive shells (login and
non-login)

~/.bash_profile Bourne-again shell only Login shells only

~/.kshrc Korn shell All interactive shells (login and
non-login)

/etc/csh.login, ~/.login C shell family Login shells only
/etc/csh.cshrc, ~/.cshrc C shell family All shell processes
~/.tcshrc T-shell All shell processes

Table 2.2: Shell Start Up Scripts

Note
Non-interactive Bourne-shell family shell processes, such as those used to execute shell scripts, do not execute any start up
scripts. Hence, Bourne shell family scripts are not affected by start up scripts.
In contrast, all C shell script processes execute ~/.cshrc if it exists. Hence, C shell family scripts are affected by ~/.cshrc. You
can override this in C-shell scripts by invoking the shell with -f as follows:

#!/bin/csh -f

The man page for your shell has all the details about which start up scripts are invoked and when.

Start up scripts are used to configure your PATH and other environment variables, set your shell prompt and other shell features,
create aliases, and anything else you want done when you start a new shell.

One of the most common alterations users make to their start up script is editing their PATH to include a directory containing
their own programs and scripts. Typically, this directory is named ~/bin, but you can name it anything you want.

To set up your own ~/bin to store your own scripts and programs, do the following:

1. shell-prompt: mkdir ~/bin

2. Edit your start up script and add ~/bin to the PATH.

If you’re using Bourne-again shell, you can add ~/bin to your PATH for login shells only by adding the following to your
.bashrc:

PATH=${PATH}:${HOME}/bin
export PATH

If you’re using T-shell, add the following to your .cshrc or .tcshrc:

setenv PATH ${PATH}:~/bin

If you are using a different shell, see the documentation for your shell to determine the correct start up script and command
syntax.

Caution
Adding ~/bin before (left of) ${PATH} will cause your shell to look in ~/bin before looking in the standard directories
such as /bin and /usr/bin. Hence, if a binary or script in ~/bin has the same name as another command, the one
in ~/bin will override it. This is considered a security risk, since users could be tricked into running a Trojan-horse
ls or other common command if care is not taken to protect ~/bin from modification.
Hence, adding to the tail (right side) of PATH is usually recommended, especially for inexperienced users.

Unix Users’s Guide 113 / 177

3. Update the PATH in your current shell process by sourcing the start up script, or by logging out and logging back in.

There is no limit to what your start up scripts can do, so you can use your imagination freely and find ways to make your Unix
shell environment easier and more powerful.

2.6.1 Self-test

1. What is the purpose of a shell start-up script?

2. What are the limitations on what a start-up script can do compared to a normal script?

2.7 Sourcing Scripts

In some circumstances, we might not want a script to be executed by a separate shell process.

For example, suppose we just made some changes to our .cshrc or .bashrc file that would affect PATH or some other important
environment variable.

If we run the start up script by typing ~/.cshrc or ~/.bashrc, a new shell process will be started which will execute the commands
in the script and then terminate. The shell you are using, which is the parent process, will be unaffected, since parent processes
do not inherit environment from their children.

In order to make the "current" shell process run the commands in a script, we must source it. This is done using the internal shell
command source in all shells except Bourne shell, which uses ".". Most Bourne-derived shells support both "." and "source".

Hence, to source .cshrc, we would run

shell-prompt: source ~/.cshrc

To source .bashrc, we would run

shell-prompt: source ~/.bashrc

or

. ~/.bashrc

To source .shrc from a basic Bourne shell, we would have to run

. ~/.shrc

2.7.1 Self-test

1. What is sourcing?

2. When would we want to source a script?

2.8 Scripting Constructs

Although Unix shells make no distinction between commands entered from the keyboard and those input from a script, there are
certain shell features that are meant for scripting and not convenient or useful to use interactively.

Many of these features will be familiar to anyone who has done any computer programming. They include constructs such as
comments, conditionals and loops.

The following sections provide a very brief introduction to shell constructs that are used in scripting, but generally not used on
the command line.

Unix Users’s Guide 114 / 177

2.9 Strings

A string constant in a shell script is anything enclosed in single quotes (’this is a string’) or double quotes ("this is also a string").

Unlike most programming languages, text in a shell scripts that is not enclosed in quotes and does not begin with a ’$’ or other
special character is also interpreted as a string constant. Hence, all of the following are the same:

shell-prompt: ls /etc
shell-prompt: ls "/etc"
shell-prompt: ls ’/etc’

However, something contains white space (spaces or tabs), then it will be seen as multiple separate strings. The last example
below will not work properly, since ’Program’ and ’Files’ are seen as separate arguments:

shell-prompt: cd ’Program Files’
shell-prompt: cd "Program Files"
shell-prompt: cd Program Files

Note
Special sequences such as ’\n’ must be enclosed in quotes or escaped, otherwise the ’\’ is seen as escaping the ’n’.

Hello\n != "Hello\n"
"Hello\n" = ’Hello\n’ = Hello\\n

2.10 Output

Output commands are only occasionally useful at the interactive command line. We may sometimes use them to take a quick
look at a variable such as $PATH.

shell-prompt: echo $PATH

Output commands are far more useful in scripts, and are used in the same ways as output statements in any programming
language.

The echo command is commonly used to output something to the terminal screen:

shell-prompt: echo ’Hello!’
Hello!
shell-prompt: echo $PATH
/usr/local/bin:/home/bacon/scripts:/home/bacon/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local ←↩

/sbin

However, echo should be avoided, since it is not portable across different shells and even the same shell on different Unix
systems. There are many different implementations of echo commands, some internal to the shell and some external programs.
Different implementations of echo use different command-line flags and special characters to control output formatting.

In addition, the output formatting capabilities of echo commands are extremely limited.

The printf command supersedes echo. It has a rich set of capabilities and is specified in the POSIX.2 standard, so its behavior is
the same on all Unix systems.

The printf command is an external command, so it is independent of which shell you are using.

The functionality of printf closely matches that of the printf() function in the standard C library. It recognizes special
characters such as ’\n’ (line feed), ’\t’ (tab), ’\r’ (carriage return), etc. and can print numbers in different bases.

shell-prompt: printf ’Hello!\n’
Hello!

Unix Users’s Guide 115 / 177

The basic syntax of a printf command is as follows:

printf format-string argument [argument ...]

The format-string contains literal text and a format specifier to match each of the arguments that follows.

Each format specifier begins with a ’%’ and is followed by a symbol indicating the format in which to print the argument.

Specifier Output
%s String
%d Decimal number
%o Octal number

Table 2.3: Printf Format Specifiers

The printf command also recognized most of the same special character sequences as the C printf() function:

Sequence Meaning
\n Newline (move down to next line)
\r Carriage Return (go to beginning of current line)
\t Tab (go to next tab stop)

Table 2.4: Special Character Sequences

printf "%s %d %o\n" 10 10 10

Output:

10 10 12

There are many other format specifiers and special character sequences. For complete information, run man printf.

To direct printf output to the standard error instead of the standard output, we simply take advantage of device independence and
use redirection:

printf ’Hello!\n’ >> /dev/stderr

Practice Break
Sync-point: Instructor: Make sure everyone in class succeeds at this exercise before moving on.
Write a shell script containing the printf statement above and run it. Write the same script using two different shells, such as
Bourne shell and C shell. What is the difference between the two scripts?

2.10.1 Self-test

1. What are the advantages of printf over the echo command?

2. Does printf work under all shells? Why or why not?

2.11 Shell and Environment Variables

Variables are essential to any programming language, and scripting languages are no exception. Variables are useful for user
input, control structures, and for giving short names to commonly used values such as long path names.

Most programming languages distinguish between variables and constants, but in shell scripting, we use variables for both.

Unix Users’s Guide 116 / 177

Shell processes have access to two separate sets of string variables.

Recall from Section 1.16 that every Unix process has a set of string variables called the environment, which are handed down
from the parent process in order to communicate important information.

For example, the TERM variable, which identifies the type of terminal a user us using, is used by programs such as top, vi, nano,
more, and other programs that need to manipulate the terminal screen (move the cursor, highlight certain characters, etc.) The
TERM environment variable is usually set by the shell process so that all of the shell’s child processes (those running vi, nano,
etc.) will inherit the variable.

Unix shells also keep another set of variables that are not part of the environment. These variables are used only for the shell’s
purpose and are not handed down to child processes.

There are some special shell variables such as "prompt" and "PS1" (which control the appearance of the shell prompt in C shell
and Bourne shell, respectively).

Most shell variables, however, are defined by the user for use in scripts, just like variables in any other programming language.

2.11.1 Assignment Statements

In all Bourne Shell derivatives, a shell variable is created or modified using the same simple syntax:

varname=value

Caution In Bourne shell and its derivatives, there can be no space around the ’=’. If there were, the shell would think
that ’varname’ is a command, and ’=’ and ’value’ are arguments.

bash-4.2$ name = Fred
bash: name: command not found
bash-4.2$ name=Fred
bash-4.2$ printf "$name\n"
Fred

When assigning a string that contains white space, it must be enclosed in quotes or the white space characters must be escaped:

#!/usr/bin/env bash

name=Joe Sixpack # Error
name="Joe Sixpack" # OK
name=Joe\ Sixpack # OK

C shell and T-shell use the set command for assigning variables.

#!/bin/csh

set name="Joe Sixpack"

Caution Note that Bourne family shells also have a set command, but it has a completely different meaning, so take
care not to get confused. The Bourne set command is used to set shell command-line options, not variables.

Unix Users’s Guide 117 / 177

Unlike some languages, shell variables need not be declared before they are assigned a value. Declaring variables is unnecessary,
since there is only one data type in shell scripts.

All variables in a shell script are character strings. There are no integers, Booleans, enumerated types, or floating point variables,
although there are some facilities for interpreting shell variables as integers, assuming they contain only digits.

If you must manipulate real numbers in a shell script, you could accomplish it by piping an expression through bc, the Unix
arbitrary-precision calculator:

printf "scale=5\n243.9 * $variable\n" | bc

Such facilities are very inefficient compared to other languages, however, partly because shell languages are interpreted, not com-
piled, and partly because they must convert each string to a number, perform arithmetic, and convert the results back to a string.
Shell scripts are meant to automate sequences of Unix commands and other programs, not perform numerical computations.

In Bourne shell family shells, environment variables are set by first setting a shell variable of the same name and then exporting
it.

TERM=xterm
export TERM

Modern Bourne shell derivatives such as bash (Bourne Again Shell) can do it in one line:

export TERM=xterm

Note Exporting a shell variable permanently tags it as exported. Any future changes to the variable’s value will automatically be
copied to the environment. This type of linkage between two objects is very rare in programming languages: Usually, modifying
one object has no effect on any other.

C shell derivatives use the setenv command to set environment variables:

setenv TERM xterm

Caution Note that unlike the ’set’ command, setenv requires white space, not an ’=’, between the variable name and
the value.

2.11.2 Variable References

To reference a shell variable or an environment variable in a shell script, we must precede its name with a ’$’. The ’$’ tells the
shell that the following text is to be interpreted as a variable name rather than a string constant. The variable reference is then
expanded, i.e. replaced by the value of the variable. This occurs anywhere in a command except inside a string bounded by
single quotes or following an escape character (\), as explained in Section 2.9.

These rules are basically the same for all Unix shells.

#!/usr/bin/env bash

name="Joe Sixpack"
printf "Hello, name!\n" # Not a variable reference!
printf "Hello, $name!\n" # References variable "name"

Output:

Hello, name!
Hello, Joe Sixpack!

Unix Users’s Guide 118 / 177

Practice Break
Type in and run the following scripts:

#!/bin/sh

first_name="Bob"
last_name="Newhart"
printf "%s %s is the man.\n" $first_name $last_name

CSH version:

#!/bin/csh

set first_name="Bob"
set last_name="Newhart"
printf "%s %s is the man.\n" $first_name $last_name

Note
If both a shell variable and an environment variable with the same name exist, a normal variable reference will expand the shell
variable.
In Bourne shell derivatives, a shell variable and environment variable of the same name always have the same value, since
exporting is the only way to set an environment variable. Hence, it doesn’t really matter which one we reference.
In C shell derivatives, a shell variable and environment variable of the same name can have different values. If you want to
reference the environment variable rather than the shell variable, you can use the printenv command:

Darwin heron bacon ~ 319: set name=Sue
Darwin heron bacon ~ 320: setenv name Bob
Darwin heron bacon ~ 321: echo $name
Sue
Darwin heron bacon ~ 322: printenv name
Bob

There are some special C shell variables that are automatically linked to environment counterparts. For example, the shell
variable path is always the same as the environment variable PATH. The C shell man page is the ultimate source for a list of
these variables.

If a variable reference is immediately followed by a character that could be part of a variable name, we could have a problem:

#!/usr/bin/env bash

name="Joe Sixpack"
printf "Hello to all the $names of the world!\n"

Instead of printing "Hello to all the Joe Sixpacks of the world", the printf will fail because there is no variable called "names".
In Bourne Shell derivatives, non-existent variables are treated as empty strings, so this script will print "Hello to all the of the
world!". C shell will complain that the variable "names" does not exist.

We can correct this by delimiting the variable name in curly braces:

#!/usr/bin/env bash

name="Joe Sixpack"
printf "Hello to all the ${name}s of the world!\n"

This syntax works for all shells.

2.11.3 Using Variables for Code Quality

Another very good use for shell variables is in eliminating redundant string constants from a script:

Unix Users’s Guide 119 / 177

#!/usr/bin/env bash

output_value=‘myprog‘
printf "$output_value\n" >> Run2/Output/results.txt
more Run2/Output/results.txt
cp Run2/Output/results.txt latest-results.txt

If for any reason the relative path Run2/Output/results.txt should change, then you’ll have to search through the script
and make sure that all instances are updated. This is a tedious and error-prone process, which can be avoided by using a variable:

#!/usr/bin/env bash

output_value=‘myprog‘
output_file="Run2/Output/results.txt"
printf "$output_value\n" >> $output_file
more $output_file
cp $output_file latest-results.txt

In the second version of the script, if the path name of results.txt changes, then only one change must be made to the script.

Avoiding redundancy is one of the primary goals of any good programmer.

In a more general programming language such as C or Fortran, this role would be served by a constant, not a variable. However,
shells do not support constants, so we use a variable for this.

In most shells, a variable can be marked read-only in an assignment to prevent accidental subsequent changes. Bourne family
shells use the readonly command for this, while C shell family shells use set -r.

#!/bin/sh

readonly output_value=‘myprog‘
printf "$output_value\n" >> Run2/Output/results.txt
more Run2/Output/results.txt
cp Run2/Output/results.txt latest-results.txt

#!/bin/csh

set -r output_value=‘myprog‘
printf "$output_value\n" >> Run2/Output/results.txt
more Run2/Output/results.txt
cp Run2/Output/results.txt latest-results.txt

2.11.4 Output Capture

Output from a command can be captured and used as a string in the shell environment by enclosing the command in back-quotes
(``). In Bourne-compatible shells, we can use $() in place of back-quotes.

#!/bin/sh -e

Using output capture in a command
printf "Today is %s.\n" ‘date‘
printf "Today is %s.\n" $(date)

Using a variable. If using the output more than once, this will
avoid running the command multiple times.
today=‘date‘
printf "Today is %s\n" $today

Unix Users’s Guide 120 / 177

2.11.5 Self-test

1. Describe two purposes for shell variables.

2. Are any shell variable names reserved? If so, describe two examples.

3. Show how to assign the value "Roger" to the variable "first_name" in both Bourne shell and C shell.

4. Why can there be no spaces around the ’=’ in a Bourne shell variable assignment?

5. How can you avoid problems when assigning values that contain white space?

6. Do shell variables need to be declared before they are used? Why or why not?

7. Show how to assign the value "xterm" to the environment variable TERM in both Bourne shell and C shell.

8. Why do we need to precede variables names with a ’$’ when referencing them?

9. How can we output a letter immediately after a variable reference (no spaces between them). For example, show a printf
statement that prints the contents of the variable fruit immediately followed by the letter ’s’.

fruit=apple
Show a printf that will produce the output "I have 10 apples", using
the variable fruit.

10. How can variables be used to enhance code quality? From what kinds of errors does this protect you?

11. How can a variable be made read-only in Bourne shell? In C shell?

2.12 Hard and Soft Quotes

Double quotes are known as soft quotes, since shell variable references, history events (!), and command output capture ($() or
``) are all expanded when used inside double quotes.

shell-prompt: history
1003 18:11 ps
1004 18:11 history

shell-prompt: echo "!hi"
echo "history"
history

shell-prompt: echo "Today is ‘date‘"
Today is Tue Jun 12 18:12:33 CDT 2018

shell-prompt: echo "$TERM"
xterm

Single quotes are known as hard quotes, since every character inside single quotes is taken literally as part of the string, except
for history events. Nothing else inside hard quotes is processed by the shell. If you need a literal ! in a string, it must be escaped.

shell-prompt: history
1003 18:11 ps
1004 18:11 history

shell-prompt: echo ’!hi’
echo ’history’
history
shell-prompt: echo ’\!hi’
!hi
shell-prompt: echo ’Today is ‘date‘’
Today is ‘date‘
shell-prompt: echo ’$TERM’
$TERM

Unix Users’s Guide 121 / 177

What will each of the following print? (If you’re not sure, try it!)

#!/usr/bin/env bash

name=’Joe Sixpack’
printf "Hi, my name is $name.\n"

#!/usr/bin/env bash

name=’Joe Sixpack’
printf ’Hi, my name is $name.\n’

#!/usr/bin/env bash

first_name=’Joe’
last_name=’Sixpack’
name=’$first_name $last_name’
printf "Hi, my name is $name.\n"

If you need to include a quote character as part of a string, you have two choices:

1. "Escape" it (precede it with a backslash character):

printf ’Hi, I\’m Joe Sixpack.\n’

2. Use the other kind of quotes to enclose the string. A string terminated by double quotes can contain a single quote and
vice-versa:

printf "Hi, I’m Joe Sixpack.\n"
printf ’You can use a " in here.\n’

No special operators are needed to concatenate strings in a shell script. We can simply place multiple strings in any form (variable
references, literal text, etc.) next to each other.

printf ’Hello ,’$var’.’ # Variable between two hard-quotes strings
printf "Hello, $var." # Variable between text in a soft-quoted string

2.12.1 Self-test

1. What is the difference between soft and hard quotes?

2. Show the output of the following script:

#!/bin/sh

name="Bill Murray"
printf "$name\n"
printf ’$name\n’
printf $name\n

2.13 User Input

In Bourne Shell derivatives, data can be input from the standard input using the read command:

Unix Users’s Guide 122 / 177

#!/usr/bin/env bash

printf "Please enter your name: "
read name
printf "Hello, $name!\n"

C shell and T-shell use a symbol rather than a command to read input:

#!/bin/csh

printf "Please enter your name: "
set name="$<"
printf "Hello, $name!\n"

The $< symbol behaves like a variable, which makes it more flexible than the read command used by Bourne family shells. It
can be used anywhere a regular variable can appear.

#!/bin/csh

printf "Enter your name: "
printf "Hi, $<!\n"

Note The $< symbol should always be enclosed in soft quotes in case the user enters text containing white space.

Practice Break
Write a shell script that asks the user to enter their first name and last name, stores each in a separate shell variable, and
outputs "Hello, first-name last-name".

Please enter your first name: Barney
Please enter your last name: Miller
Hello, Barney Miller!

2.13.1 Self-test

1. Do the practice break in this section if you haven’t already.

2.14 Conditional Execution

Sometimes we need to run a particular command or sequence of commands only if a certain condition is true.

For example, if program B processes the output of program A, we probably won’t want to run B at all unless A finished success-
fully.

2.14.1 Command Exit Status

Conditional execution in Unix shell scripts often utilizes the exit status of the most recent command.

All Unix programs return an exit status. It is not possible to write a Unix program that does not return an exit status. Even if the
programmer neglects to explicitly return a value, the program will return a default value.

By convention, programs return an exit status of 0 if they determine that they completed their task successfully and a variety of
non-zero error codes if they failed. There are some standard error codes defined in the C header file sysexits.h. You can learn
about them by running man sysexits.

Unix Users’s Guide 123 / 177

We can check the exit status of the most recent command by examining the shell variable $? in Bourne shell family shells or
$status in C shell family shells.

bash> ls
myprog.c
bash> echo $?
0
bash> ls -z
ls: illegal option -- z
usage: ls [-ABCFGHILPRSTUWZabcdfghiklmnopqrstuwx1] [-D format] [file ...]
bash> echo $?
1
bash>

tcsh> ls
myprog.c
tcsh> echo $status
0
tcsh> ls -z
ls: illegal option -- z
usage: ls [-ABCFGHILPRSTUWZabcdfghiklmnopqrstuwx1] [-D format] [file ...]
tcsh> echo $status
1
tcsh>

Practice Break
Run several commands correctly and incorrectly and check the $? or $status variable after each one.

2.14.2 If-then-else Statements

All Unix shells have an if-then-else construct implemented as internal commands. The Bourne shell family of shells all use the
same basic syntax. The C shell family of shells also use a common syntax, which is somewhat different from the Bourne shell
family.

Bourne Shell Family

The general syntax of a Bourne shell family if statement is shown below. Note that there can be an unlimited number of elifs, but
we will use only one for this example.

#!/bin/sh

if command1
then

command
command
...

elif command2
then

command
command
...

else
command
command
...

fi

Unix Users’s Guide 124 / 177

Note
The ’if’ and the ’then’ are actually two separate commands, so they must either be on separate lines as shown above, or
separated by an operator such as ’;’, which can be used instead of a newline to separate Unix commands.

cd; ls
if command; then

The if command executes command1 and checks the exit status when it completes.

If the exit status of command1 is 0 (indicating success), then all the commands before the elif are executed, and everything after
the elif is skipped.

If the exit status is non-zero, then nothing above the elif is executed. The elif command then executes command2 and checks its
exit status.

If the exit status of command2 is 0, then the commands between the elif and the else are executed and everything after the else is
skipped.

If the exit status of command2 is non-zero, then everything above the else is skipped and everything between the else and the fi
is executed.

Note In Bourne shell if statements, an exit status of zero effectively means ’true’ and non-zero means ’false’, which is the
opposite of C and similar languages.

In most programming languages, we use some sort of Boolean expression (usually a comparison, also known as a relation), not
a command, as the condition for an if statement.

This is generally true in Bourne shell scripts as well, but the capability is provided in an interesting way. We’ll illustrate by
showing an example and then explaining how is works.

Suppose we have a shell variable and we want to check whether it contains the string "blue". We could use the following if
statement to test:

#!/bin/sh

printf "Enter the name of a color: "
read color

if ["$color" = "blue"]; then
printf "You entered blue.\n"

elif ["$color" = "red"]; then
printf "You entered red.\n"

else
printf "You did not enter blue or red.\n"

fi

The interesting thing about this code is that the square brackets are not Bourne shell syntax. As stated above, the Bourne shell if
statement simply executes a command and checks the exit status. This is always the case.

The ’[’ in the condition above is actually an external command! In fact, is simply another name for the test command. The files
/bin/test and /bin/[are actually the same program file:

FreeBSD tocino bacon ~ 401: ls -l /bin/test /bin/[
-r-xr-xr-x 2 root wheel 8516 Apr 9 2012 /bin/[*
-r-xr-xr-x 2 root wheel 8516 Apr 9 2012 /bin/test*

We could have also written the following:

Unix Users’s Guide 125 / 177

if test "$color" = "blue"; then

Hence, "$color", =, "blue", and] are all separate arguments to the [command, and must be separated by white space. If the
command is invoked as ’[’, then the last argument must be ’]’. If invoked as ’test’, then the ’]’ is not allowed.

The test command can be used to perform comparisons (relational operations) on variables and constants, as well as a wide
variety of tests on files. For comparisons, test takes three arguments: the first and third are string values and the second is a
relational operator.

Compare a variable to a string constant
test "$name" = ’Bob’

Compare the output of a program directly to a string constant
test ‘myprog‘ = 42

For file tests, test takes two arguments: The first is a flag indicating which test to perform and the second is the path name of the
file or directory.

See if output file exists and is readable to the user
running test
test -r output.txt

The exit status of test is 0 (success) if the test is deemed to be true and a non-zero value if it is false.

shell-prompt: test 1 = 1
shell-prompt: echo $?
0
shell-prompt: test 1 = 2
shell-prompt: echo $?
1

The relational operators supported by test are shown in Table 2.5.

Operator Relation
= Lexical equality (string comparison)
-eq Integer equality
!= Lexical inequality (string comparison)
-ne Integer inequality
< Lexical less-than (10 < 9)
-lt Integer less-than (9 -lt 10)
-le Integer less-than or equal
> Lexical greater-than
-gt Integer greater-than
-ge Integer greater-than or equal

Table 2.5: Test Command Relational Operators

Caution
Note that some operators, such as < and >, have special meaning to the shell, so they must be escaped or quoted.

test 10 > 9 # Redirects output to a file called ’9’.
The only argument sent to the test command is ’10’.
The test command issues a usage message since it requires
more arguments.

test 10 \> 9 # Compares 10 to 9.
test 10 ’>’ 9 # Compares 10 to 9.

Unix Users’s Guide 126 / 177

Caution It is a common error to use ’==’ with the test command, but the correct comparison operator is ’=’.

Common file tests are shown in Table 2.6. To learn about additional file tests, run "man test".

Flag Test
-e Exists
-r Is readable
-w Is writable
-x Is executable
-d Is a directory
-f Is a regular file
-L Is a symbolic link
-s Exists and is not empty
-z Exists and is empty

Table 2.6: Test command file operations

Caution
Variable references in a [or test command should usually be enclosed in soft quotes. If the value of the variable contains
white space, such as "navy blue", and the variable is not enclosed in quotes, then "navy" and "blue" will be considered
two separate arguments to the [command, and the [command will fail. When [sees "navy" as the first argument, it
expects to see a relational operator as the second argument, but instead finds "blue", which is invalid.
Furthermore, if there is a chance that a variable used in a comparison is empty, then we must attach a common string
to the arguments on both sides of the operator. It can be almost any character, but ’0’ is popular and easy to read.

name=""
if ["$name" = "Bob"]; then # Error, expands to: if [= Bob; then
if [0"$name" = 0"Bob"]; then # OK, expands to: if [0 = 0Bob]; then

Relational operators are provided by the test command, not by the shell. Hence, to find out the details, we would run "man test"
or "man [", not "man sh" or "man bash".

See Section 2.14.1 for information about using the test command.

Unix Users’s Guide 127 / 177

Practice Break
Run the following commands in sequence and run ’echo $?’ after every test or [command under bash and ’echo $status’ after
every test or [command under tcsh.

bash
test 1 = 1
test 1=2
test 1 = 2
[1 = 1
[1 = 1]
[1 = ’1’]
[1=1]
[2 < 10]
[2 = 3]
[2 \< 10]
[2 ’<’ 10]
[2 -lt 10]
[$name = ’Bill’]
[0$name = 0’Bill’]
name=’Bob’
[$name = ’Bill’]
[$name = Bill]
[$name = Bob]
exit
tcsh
[$name = ’Bill’]
[0$name = 0’Bill’]
set name=’Bob’
[$name = ’Bill’]
which [
exit

C shell Family

Unlike the Bourne shell family of shells, the C shell family implements its own operators, so there is generally no need for the
test or [command (although you can use it in C shell scripts if you really want to).

The C shell if statement requires () around the condition, and the condition is always a Boolean expression, just like in C and
similar languages. As in C, and unlike Bourne shell, a value of zero is considered false and non-zero is true.

#!/bin/csh -ef

printf "Enter the name of a color: "
set color = "$<"

if ("$color" == "blue") then
printf "You entered blue.\n"

else if ("$color" == "red") then
printf "You entered red.\n"

else
printf "You did not enter blue or red.\n"

endif

The C shell relational operators are shown in Table 2.7.

Note C shell does not directly support string comparisons except for equality and inequality. To see if a string is lexically less-
than or greater than another, use the test or [command with <, <=, >, or >=.

Unix Users’s Guide 128 / 177

Operator Relation
< Integer less-than
> Integer greater-than
<= Integer less-then or equal
>= Integer greater-than or equal
== String equality
!= String inequality
=~ String matches glob pattern
!~ String does not match glob pattern

Table 2.7: C Shell Relational Operators

Conditions in a C shell if statement do not have to be relations, however. We can check the exit status of a command in a C shell
if statement using the {} operator:

#!/bin/csh

if ({ command }) then
command
...

endif

The {} essentially inverts the exit status of the command. If command returns 0, the the value of { command } is 1, which means
"true" to the if statement. If command returns a non-zero status, then the value of { command } is zero.

C shell if statements also need soft quotes around strings that contain white space. However, unlike the test command, it can
handle empty strings, so we don’t need to add an arbitrary prefix like ’0’ if the string may be empty.

if [0"$name" = 0"Bob"]; then

if ("$name" == "Bob") then

Practice Break
Type in the following commands in sequence:

tcsh
if ($first_name == Bob) then

printf ’Hi, Bob!\n’
endif
set first_name=Bob
if ($first_name == Bob) then

printf ’Hi, Bob!\n’
endif
exit

2.14.3 Conditional Operators

The shell’s conditional operators allow us to alter the exit status of a command or utilize the exit status of each in a sequence of
commands. They include the Boolean operators AND (&&), OR (||), and NOT (!).

shell-prompt: command1 && command2
shell-prompt: command1 || command2
shell-prompt: ! command

Unix Users’s Guide 129 / 177

Operator Meaning Exit status
! command NOT 0 if command failed, 1 if it succeeded
command1 && command2 AND 0 if both commands succeeded
command1 || command2 OR 0 if either command succeeded

Table 2.8: Shell Conditional Operators

Note that in the case of the && operator, command2 will not be executed if command 1 fails (exits with non-zero status), since
it could not change the exit status. Once any command in an && sequence fails, the exit status of the whole sequence will be 1,
so no more commands will be executed.

Likewise in the case of a || operator, once any command succeeds (exits with zero status), the remaining commands will not be
executed.

This fact is often used to conditionally execute a command only if another command is successful:

pre-processing && main-processing && post-processing

When using the test or [commands, multiple tests can be performed using either the shell’s conditional operators or the test
command’s Boolean operators:

if [0"$first_name" = 0"Bob"] && [0"$last_name" = 0"Newhart"]; then
if test 0"$first_name" = 0"Bob" && test 0"$last_name" = 0"Newhart"; then

if [0"$first_name" = 0"Bob" -a 0"$last_name" = 0"Newhart"]; then
if test 0"$first_name" = 0"Bob" -a 0"$last_name" = 0"Newhart"; then

The latter is probably more efficient, since it only executes a single [command, but efficiency in shell scripts is basically a lost
cause, so it’s best to aim for readability instead. If you want speed, use a compiled language.

Conditional operators can also be used in a C shell if statement. Parenthesis are recommended around each relation for readability.

if (("$first_name" == "Bob") && ("$last_name" == "Newhart")) then

Unix Users’s Guide 130 / 177

Practice Break
Run the following commands in sequence and run ’echo $?’ after every command under bash and ’echo $status’ after every
command under tcsh.

bash
ls -z
ls -z && echo Done
ls -a && echo Done
ls -z || echo Done
ls -a || echo Done
first_name=Bob
last_name=Newhart
if [0"$first_name" = 0"Bob"] && [0"$last_name" = 0"Newhart"]
then

printf ’Hi, Bob!\n’
fi
if [0"$first_name" = 0"Bob" -a 0"$last_name" = 0"Newhart"]
then

printf ’Hi, Bob!\n’
fi
exit
tcsh
ls -z
ls -z && echo Done
ls -a && echo Done
ls -z || echo Done
ls -a || echo Done
if ($first_name == Bob && $last_name == Newhart) then

printf ’Hi, Bob!\n’
endif
set first_name=Bob
set last_name=Nelson
if ($first_name == Bob && $last_name == Newhart) then

printf ’Hi, Bob!\n’
endif
set last_name=Newhart
if ($first_name == Bob && $last_name == Newhart) then

printf ’Hi, Bob!\n’
endif
exit

2.14.4 Case and Switch Statements

If you need to compare a single variable to many different values, you could use a long string of elifs or else ifs:

#!/bin/sh

printf "Enter a color name: "
read color

if ["$color" = "red"] || \
["$color" = "orange"]; then
printf "Long wavelength\n"

elif ["$color" = "yello"] || \
["$color" = "green"] || \
["$color" = "blue"]; then

printf "Medium wavelength\n"
elif ["$color" = "indigo"] || \

["$color" = "violet"]; then

Unix Users’s Guide 131 / 177

printf "Short wavelength\n"
else

printf "Invalid color name: $color\n"
fi

Like most languages, however, Unix shells offer a cleaner solution.

Bourne shell has the case statement:

#!/bin/sh

printf "Enter a color name: "
read color

case $color in
red|orange)

printf "Long wavelength\n"
;;

yellow|green|blue)
printf "Medium wavelength\n"
;;

indigo|violet)
printf "Short wavelength\n"
;;

*)
printf "Invalid color name: $color\n"
;;

esac

C shell has a switch statement that looks almost exactly like the switch statement in C, C++, and Java:

#!/bin/csh -ef

printf "Enter a color name: "
set color = "$<"

switch($color)
case red:
case orange:

printf "Long wavelength\n"
breaksw

case yellow:
case green:
case blue:

printf "Medium wavelength\n"
breaksw

case indigo:
case violet:

printf "Short wavelength\n"
breaksw

default:
printf "Invalid color name: $color\n"

endsw

Note The ;; and breaksw statements cause a jump to the first statement after the entire case or switch. The ;; is required after
every value in the case statement. The breaksw is optional in the switch statement. If omitted, the script will simply continue on
and execute the statements for the next case value.

Unix Users’s Guide 132 / 177

2.14.5 Self-test

1. What is an "exit status"? What conventions to Unix programs follow regarding the exit status?

2. How can we find out the exit status of the previous command in Bourne shell? In C shell?

3. Write a Bourne shell script that uses an if statement to run ’ls -l > output.txt’ and view the output using ’more’ only of the
ls command succeeded.

4. Repeat the previous problem using C shell.

5. Write a Bourne shell script that inputs a first name and outputs a different message depending on whether the name is
’Bob’.

shell-prompt: ./script
What is your name? Bob
Hey, Bob!
shell-prompt: ./script
What is your name? Bill
Hey, you’re not Bob!

6. Repeat the previous problem using C shell.

7. Write a Bourne and/or C shell script that inputs a person’s age and indicates whether they get free peanuts. Peanuts are
provided to senior citizens.

shell-prompt: ./script
How old are you? 42
Sorry, no peanuts for you.
shell-prompt: ./script
How old are you? 72
Have some free peanuts, wise sir!

8. Why is it necessary to separate the tokens between [and] with white space? What will happen if we don’t?

9. What will happen if a value being compared using test or [contains white space? How to we remedy this?

10. What will happen if a value being compared using test or [is an empty string? How to we remedy this?

11. Why do the < and > operators need to be escaped (\<, \>) or quoted when used with the test command?

12. What is the == operator used for with the test command?

13. How do we check the exit status of a command in a C shell if statement?

14. Write a Bourne and/or C shell script that inputs a person’s age and indicates whether they get free peanuts. Peanuts are
provided to senior citizens and children between the ages of 3 and 12.

shell-prompt: ./script
How old are you? 42
Sorry, no peanuts for you.
shell-prompt: ./script
How old are you? 72
Have some free peanuts, wise sir!

15. Write a Bourne shell script that uses conditional operators to run ’ls -l > output.txt’ and view the output using ’more’ only
of the ls command succeeded.

16. Write a shell script that checks the output of uname using a case or switch statement and reports whether the operating
system is supported. Assume supported operating systems include Cygwin, Darwin, FreeBSD, and Linux.

shell-prompt: ./script
FreeBSD is supported.

shell-prompt: ./script
AIX is not supported.

Unix Users’s Guide 133 / 177

2.15 Loops

We often need to run the same command or commands on a group of files or other data.

2.15.1 For and Foreach

Unix shells offer a type of loop that takes an enumerated list of string values, rather than counting through a sequence of numbers.
This makes it more flexible for working with sets of files or or arbitrary sets of values.

This type of loop is well suited for use with globbing (file name patterns using wild cards, as discussed in Section 1.7.5):

#!/usr/bin/env bash

Process input-1.txt, input-2.txt, etc.
for file in input-*.txt
do

./myprog $file
done

#!/bin/csh -ef

Process input-1.txt, input-2.txt, etc.
foreach file (input-*.txt)

./myprog $file
end

These loops are not limited to using file names, however. We can use them to iterate through any list of string values:

#!/bin/sh

for fish in flounder gobie hammerhead manta moray sculpin
do

printf "%s\n" $fish
done

#!/usr/bin/env bash

for c in 1 2 3 4 5 6 7 8 9 10
do

printf "%d\n" $c
done

To iterate through a list of integers too long to type out, we can utilize the seq command, which takes a starting value, optionally
an increment value, and an ending value. We use shell output capture (Section 2.11.4) to represent the output of the seq command
as a string in the script:

#!/bin/sh -e

Count from 0 to 1000 in increments of 5
for c in $(seq 0 5 1000); do

printf "%d\n" $c
done

#!/bin/csh

foreach c (‘seq 0 5 1000‘)
printf "%s\n" $c

end

Unix Users’s Guide 134 / 177

The seq can also be used to embed integer values in a non-integer list:

#!/bin/sh -e

Process all human chromosomes
for chromosome in $(seq 1 22) X Y; do

printf "chr%s\n" $chromosome
done

Practice Break
Type in and run the fish example above.

Note Note again that the Unix commands, including the shell, don’t generally care whether their input comes from a file or
a device such as the keyboard. Try running the fish example by typing it directly at the shell prompt as well as by writing a
script file. When running it directly, be sure to use the correct shell syntax for the interactive shell you are running.

Example 2.3 Multiple File Downloads
Often we need to download many large files from another site. This process would be tedious to do manually: Start a download,
wait for it to finish, start another... There may be special tools provided, but often they are unreliable or difficult to install. In
many cases, we may be able to automate the download using a simple script and a file transfer tool such as curl, fetch, rsync or
wget.
The model scripts below demonstrate how to download a set of files using curl. The local file names will be the same as those on
the remote site and if the transfer is interrupted for any reason, we can simply run the script again to resume the download where
it left off.
Depending on the tools available on your local machine and the remote server, you may need to substitute another file transfer
program for curl.

#!/bin/sh -e

Download genome data from the ACME genome project
site=http://server.with.my.files/directory/with/my/files
for file in frog1 frog2 frog3 toad1 toad2 toad3; do

printf "Fetching $site/$file.fasta.gz...\n"

Use filename from remote site and try to resume interrupted
transfers if a partial download already exists
curl --continue-at - --remote-name $site/$file.fasta.gz

fi

#!/bin/csh -ef

Download genome data from the ACME genome project
set site=http://server.with.my.files/directory/with/my/files
foreach file (frog1 frog2 frog3 toad1 toad2 toad3)

printf "Fetching $site/$file.fasta.gz...\n"

Use filename from remote site and try to resume interrupted
transfers if a partial download already exists
curl --continue-at - --remote-name $site/$file.fasta.gz

end

2.15.2 While Loops

A for or foreach loop is only convenient for iterating through a fixed set of values. Sometimes we may need to terminate a loop
based on inputs that are unknown when the loop begins, or values computed over the course of the loop.

Unix Users’s Guide 135 / 177

The while loop is a more general loop that iterates as long as some condition is true. It uses the same types of expressions as an
if statement.

The while loop is often used to iterate through long integer sequences:

#!/usr/bin/env bash

c=1
while [$c -le 100]
do

printf "%d\n" $c
c=$(($c + 1)) # (()) encloses an integer expression

done

Note again that the [above is an external command, as discussed in Section 2.14.1.

#!/bin/csh -ef

set c = 1
while ($c <= 100)

printf "%d\n" $c
@ c = $c + 1 # @ is like set, but indicates an integer expression

end

Practice Break
Type in and run the script above.

While loops can also be used to iterate until an input condition is met:

#!/bin/sh

continue=’’
while [0"$continue" != 0’y’] && [0"$continue" != 0’n’]; do

printf "Would you like to continue? (y/n) "
read continue

done

#!/bin/csh -ef

set continue=’’
while (("$continue" != ’y’) && ("$continue" != ’n’))

printf "Continue? (y/n) "
set continue="$<"

end

Practice Break
Type in and run the script above.

We may even want a loop to iterate forever. This is often useful when using a computer to collect data at regular intervals:

#!/bin/sh

’true’ is an external command that always returns an exit status of 0

Unix Users’s Guide 136 / 177

while true; do
sample-data # Read instrument
sleep 10 # Pause for 10 seconds without using any CPU time

done

#!/bin/csh -ef

while (1)
sample-data # Read instrument
sleep 10 # Pause for 10 seconds without using any CPU time

end

2.15.3 Self-test

1. Write a shell script that prints the square of every number from 1 to 100.

2. Write a shell script that sorts all files with names ending in ".txt" one at a time, removes duplicate entries, and saves the
output to filename.txt.sorted. The script then merges all the sorted text into a single file called combined.
txt.sorted. The sort can also merge presorted files when used with the -m flag.

The standard Unix sort can be used to sort an individual file. The uniq command will remove duplicate lines that are
adjacent to each other. (Hence, the data should be sorted already.)

3. Do the examples for shell loops above give you any ideas about using multiple computers to speed up processing?

2.16 Generalizing Your Code

All programs and scripts require input in order to be useful.

Inputs commonly include things like scalar parameters to use in equations and the names of files containing more extensive data
such as a matrix or a database.

2.16.1 Hard-coding: Failure to Generalize

All too often, inexperienced programmers provide what should be input to a program by hard-coding values and file names into
their programs and scripts:

#!/bin/csh

Hard-coded values 1000 and output.txt
calcpi 1000 > output.txt

Many programmers will then make another copy of the program or script with different constants or file names in order to do a
different run. The problem with this approach should be obvious. It creates a mess of many nearly identical programs or scripts,
all of which have to be maintained together. If a bug is found in one of them, then all of them have to be checked and corrected
for the same error.

2.16.2 Generalizing with User Input

A better approach is to take these values as input:

Unix Users’s Guide 137 / 177

#!/bin/csh

printf "How many iterations? "
set iterations = "$<"
printf "Output file? "
set output_file = "$<"

calcpi $iterations > $output_file

If you don’t want to type in the values every time you run the script, you can put them in a separate input file, such as "input-
1000.txt" and use redirection:

shell-prompt: cat input-1000.txt
1000
output-1000.txt
shell-prompt: calcpi-script < input-1000.txt

This way, if you have 50 different inputs to try, you have 50 input files and only one script to maintain instead of 50 scripts.

2.16.3 Generalizing with Command-line Arguments

Another approach is to design the script so that it can take command-line arguments, like most Unix commands. Using command-
line arguments is quite simple in most scripting and programming languages.

In all Unix shell scripts, the first argument is denoted by the special variable $1, the second by $2, and so on.

$0 refers to the name of the command as it was invoked.

Bourne Shell Family

In Bourne Shell family shells, we can find out how many command-line arguments were given by examining the special shell
variable "$#". This is most often used to verify that the script was invoked with the correct number of arguments.

#!/bin/sh

If invoked incorrectly, tell the user the correct way
if [$# != 2]; then

printf "Usage: $0 iterations output-file\n"
exit 1

fi

Assign to named variables for readability
iterations=$1
output_file="$2" # File name may contain white space!

calcpi $iterations > "$output_file"

shell-prompt: calcpi-script
Usage: calcpi-script iterations output-file
shell-prompt: calcpi-script 1000 output-1000.txt
shell-prompt: cat output-1000.txt
3.141723494

C shell Family

In C shell family shells, we can find out how many command-line arguments were given by examining the special shell variable
"$#argv".

Unix Users’s Guide 138 / 177

#!/bin/csh

If invoked incorrectly, tell the user the correct way
if ($#argv != 2) then

printf "Usage: $0 iterations output-file\n"
exit 1

endif

Assign to named variables for readability
set iterations=$1
set output_file="$2" # File name may contain white space!

calcpi $iterations > "$output_file"

shell-prompt: calcpi-script
Usage: calcpi-script iterations output-file
shell-prompt: calcpi-script 1000 output-1000.txt
shell-prompt: cat output-1000.txt
3.141723494

2.16.4 Self-test

1. Modify the following shell script so that it takes the file name of the dictionary and the sample word as user input instead
of hard-coding it. You may use any shell you choose.

#!/bin/sh

if fgrep ’abacus’ /usr/share/dict/words; then
printf ’abacus is a real word.\n’

else
printf ’abacus is not a real word.\n’

fi

2. Repeat the above exercise, but use command-line arguments instead of user input.

2.17 Scripting an Analysis Pipeline

2.17.1 What’s an Analysis Pipeline?

An analysis pipeline is simply a sequence of processing steps.

Since the steps are basically the same for a given type of analysis, we can automate the pipeline using a scripting language for
the reasons we discussed at the beginning of this chapter: To save time and avoid mistakes.

A large percentage of scientific research analyses require multiple steps, so pipelines are very common in practice.

2.17.2 Where do Pipelines Come From?

It has been said that for every PhD thesis, there is a pipeline.

There are many preexisting pipelines available for a wide variety of tasks.

Many such pipelines were developed by researchers for a specific project, and then generalized in order to be useful for other
projects or other researchers.

Unix Users’s Guide 139 / 177

Unfortunately, most such pipelines are not well designed or rigorously tested, so they don’t work well for analyses that differ
significantly from the one for which they were originally designed.

Another problem is that most of them are not well maintained over the long term. Developers set out with good intentions to help
other researchers, but once their project is done and they move onto new things, they find that they don’t have time to maintain
old pipelines anymore. Also, new tools are constantly evolving and old pipelines therefore quickly become obsolete unless they
are aggressively updated.

Finally, many pipelines are integrated into a specific system with a graphical user interface (GUI) or web interface, and therefore
cannot be used on a generic computer or HPC cluster (unless the entire system is installed and configured, which is often difficult
or impossible).

For these reasons, every researcher should know how to develop their own pipelines. Relying on the charity of your competitors
for publishing space and grant money will not lead to long-term success.

This is especially true for long-term studies. If you become dependent on a preexisting pipeline early on, and it is not maintained
by its developers for the duration of your study, then the completion of your study will prove very difficult.

2.17.3 Implementing Your Own Pipeline

A pipeline can be implemented in any programming language.

Since most pipelines involve simply running a series of programs with the appropriate command-line arguments, a Unix shell
script is a very suitable choice in most cases.

In some cases, it may be possible to use Unix shell pipes to perform multiple steps at the same time. This will depend on a
number of things:

• Do the processing programs use standard input and standard output? If not, then redirecting to and from them with pipes will
not be possible.

• What are the resource requirements of each step? Do you have enough memory to run multiple steps at the same time?

• Do you need to save the intermediate files generated by some of the steps? If so, then either don’t use a Unix shell pipe, or use
the tee command to dump output to a file and pipe it to the next command at the same time.

shell-prompt: step1 < input1 | tee output1 | step2 > output2

2.17.4 An Example Genomics Pipeline

Below is a simple shell script implementation of the AmrPlusPlus pipeline, which, according to their website, is used to "charac-
terize the content and relative abundance of sequences of interest from the DNA of a given sample or set of samples".

People can use this pipeline by uploading their data to the developer’s website, or by installing the pipeline to their own Docker
container or Galaxy server.

In reality, the analysis is performed by the following command-line tools, which are developed by other parties and freely
available:

• Trimmomatic

• BWA

• Samtools

• SNPFinder

• ResistomeAnalyzer

• RarefactionAnalyzer

Unix Users’s Guide 140 / 177

The role of AmrPlusPlus is to coordinate the operation of these tools. AmrPlusPlus is itself a script.

If you don’t want to be dependent on their web service, a Galaxy server, or their Docker containers, or if you would like greater
control over and understanding of the analysis pipeline, or if you want to use the newer versions of tools such as samtools, you
can easily write your own script to run the above commands.

Also, when developing our own pipeline, we can substitute other tools that perform the same function, such as Cutadapt in place
of Trimmomatic, or Bowtie (1 or 2) in place of BWA for alignment.

All of these tools are designed for "short-read" DNA sequences (on the order of 100 base pair per fragment). When we take
control of the process rather than rely on someone else’s pipeline, we open the possibility of developing an analogous pipeline
using a different set of tools for "long-read" sequences (on the order of 1000 base pair per fragment).

For our purposes, we install the above commands via FreeBSD ports and/or pkgsrc (on CentOS and Mac OS X). To facilitate this,
I created a metaport that automatically installs all the tools needed by the pipeline (Trimmomatic, BWA, ...) as dependencies.
The following will install everything in a few minutes:

shell-prompt: cd /usr/ports/wip/amr-cli
shell-prompt: make install

Then we just write a Unix shell script to implement the pipeline for our data.

Note that this is a real pipeline used for research at the UWM School of Freshwater Science.

It is not important whether you understand genomics analysis for this example. Simply look at how the script uses loops and
other scripting constructs to see how the material you just learned can be used in actual research. I.e., don’t worry about what
cutadapt and bwa are doing with the data. Just see how they are run within the pipeline script, using redirection, command
line arguments, etc. Also read the comments within the script for a deeper understanding of what the conditionals and loops are
doing.

#!/bin/sh -e

Get gene fraction threshold from user
printf "Resistome threshold? "
read threshold

##
1. Enumerate input files

raw_files="SRR*.fastq"

##
2. Quality control: Remove adapter sequences from raw data

for file in $raw_files; do
output_file=trimmed-$file
If the output file already exists, assume cutadapt was already run
successfully. Remove trimmed-* before running this script to force
cutadapt to run again.
if [! -e $output_file]; then

cutadapt $file > $output_file
else

printf "$raw already processed by cutadapt.\n"
fi

done

##
3. If sequences are from a host organism, remove host dna

Index resistance gene database
if [! -e megares_database_v1.01.fasta.ann]; then

bwa index megares_database_v1.01.fasta
fi

Unix Users’s Guide 141 / 177

##
4. Align to target database with bwa mem.

for file in $raw_files; do
Output is an aligned sam file. Replace trimmed- prefix with aligned-
and replace .fastq suffix with .sam
output_file=aligned-${file%.fastq}.sam
if [! -e $output_file]; then

printf "\nRunning bwa-mem on $file...\n"
bwa mem megares_database_v1.01.fasta trimmed-$file > $output_file

else
printf "$file already processed by bwa mem\n"

fi
done

##
5. Resistome analysis.

aligned_files=aligned-*.sam
for file in $aligned_files; do

if [! -e ${file%.sam}group.tsv]; then
printf "\nRunning resistome analysis on $file...\n"
resistome -ref_fp megares_database_v1.01.fasta -sam_fp $file \

-annot_fp megares_annotations_v1.01.csv \
-gene_fp ${file%.sam}gene.tsv \
-group_fp ${file%.sam}group.tsv \
-class_fp ${file%.sam}class.tsv \
-mech_fp ${file%.sam}mech.tsv \
-t $threshold

else
printf "$file already processed by resistome.\n"

fi
done

##
6. Rarefaction analysis?

I generally write a companion to every analysis script to remove output files and allow a fresh start for the next attempt:

#!/bin/sh -e

rm -f trimmed-* aligned-* aligned-*.tsv megares*.fasta.*

2.18 Functions and Calling other Scripts

Most scripts tend to be short, but even a program of 100 lines long can benefit from being broken down and organized into
modules.

The Bourne family shells support simple functions for this purpose.

C shell family shells do not support separate functions within a script, but this does not mean that they cannot be modularized. A
C shell script can, of course, run other scripts and these separate scripts can serve the purpose of subprograms.

Some would argue that separate scripts are more modular than functions, since a separate script is inherently available to any
script that could use it, whereas a function is confined to the script that contains it.

Another advantage of using separate scripts is that they run as a separate process, so they have their own set of shell and
environment variables. Hence, they do not have side-effects on the calling script. Bourne shell functions, on the other hand, can
modify "global" variables and impact the subsequent behavior of other functions or the main program.

Unix Users’s Guide 142 / 177

There are some functions that are unlikely to be useful in other scripts, however, and Bourne shell functions are convenient in
these cases. Also, it is generally easy to convert a Bourne shell function into a separate script, so there isn’t generally much to
lose by using a function initially.

2.18.1 Bourne Shell Functions

A Bourne shell function is defined by simply writing a name followed by parenthesis, and a body between curly braces on the
lines below:

name()
{

commands
}

We call a function the same way we run any other command.

#!/bin/sh

line()
{

printf ’---\n’
}

line

I we pass arguments to a function, then the variables $1, $2, etc. in the function will be set to the arguments passed to the
function. Otherwise, $1, $2, etc. will be the arguments to the main script.

#!/bin/sh

print_square()
{

printf $(($1 * $1))
}

c=1
while [$c -le 10]; do

printf "%d squared = %d\n" $c ‘print_square c‘
c=$((c + 1))

done

The return statement can be used to return a value to the caller. The return value is received by the caller in $?, just like the exit
status of any other command. This is most often used to indicate success or failure of the function.

#!/bin/sh

myfunc()
{

if ! command1; then
return 1

if ! command2; then
return 1

return 0
}

if ! myfunc; then
exit 1

fi

Unix Users’s Guide 143 / 177

We can define local variables in a function if we do not want the function to modify a variable outside itself.

#!/bin/sh

pause()
{

local response

printf "Press return to continue..."
read response

}

pause

2.18.2 C Shell Separate Scripts

Since C shell does not support internal functions, we implement subprograms as separate scripts.

Each script is executed by a separate shell process, so all variables are essentially local to that script.

We can, of course, use the source to run another script using the parent shell process as described in Section 2.7. In this case, it
will affect the shell and environment variables of the calling script. This is usually what we intend and the very reason for using
the source command.

When using separate scripts as subprograms, it is especially helpful to place the scripts in a directory that is in your PATH. Most
users use a directory such as ~/bin or ~/scripts for this purpose.

2.18.3 Self-test

2.19 Alias

An alternative to functions and separate scripts for very simple things is the alias command.

This command creates an alias, or alternate name for another command.

Aliases are supported by both Bourne and C shell families, albeit with a slightly different syntax.

They are most often used to create simple shortcuts for common commands.

In Bourne shell and derivatives, the new alias is followed by an ’=’. Any command containing white space must be enclosed in
quotes, or the white space must be escaped with a \.

#!/bin/sh

alias dir=’ls -als’

dir

C shell family shells use white space instead of an ’=’ and do not require quotes around commands containing white space.

#!/bin/csh

alias dir ls -als

dir

An alias can contain multiple commands, but in this case it must be enclosed in quotes, even in C shell.

Unix Users’s Guide 144 / 177

#!/bin/csh

This will not work:
alias pause printf "Press return to continue..."; $<
#
It is the same as:
#
alias pause printf "Press return to continue..."
$<

This works
alias pause ’printf "Press return to continue..."; $<’

pause

2.20 Shell Flags and Variables

Unix shells have many command line flags to control their behavior.

One of the most popular shell flags is -e. The -e flag in both Bourne Shell and C shell cause the shell to exit if any command
fails. This is almost always a good idea, to avoid wasting time and so that the last output of a script shows any error messages
from the failed command.

Flags can be used in the shebang line if the path of the shell is fixed. When using #!/usr/bin/env, we must set the option using a
separate command, because the shebang line on some systems treats everything after ’#!/usr/bin/env’ as a single argument to the
env command.

#!/bin/sh -e

The shebang line above is OK

#!/bin/csh -e

The shebang line above is OK

#!/usr/bin/env bash -e

The shebang line above is invalid on some systems and may cause
an error such as "bash -e: command not found"

We can get around this in Bourne family shells using the set command, which can be used to turn on or off command-line flags
within the script. For example, "set -e" in a script causes the shell running the script to terminate if any subsequent commands
fail. A "set +e" turns off this behavior.

#!/usr/bin/env bash

Enable exit-on-error
set -e

Unfortunately, C shell family shells do not have anything comparable to the Bourne shell set command. Recall that C shell has a
set command, but it is use to set shell variables, not command-line flags.

Many features controlled by command-line flags can also be set within a C shell script using special shell variables, but -e is not
one of them.

The -x flag is another flag common to both Bourne Shell and C shell. If causes the shell to echo commands to the standard output
before executing them, which is often useful in debugging a script that it failing at an unknown location.

#!/bin/sh -x

Unix Users’s Guide 145 / 177

#!/bin/csh -x

#!/bin/sh

set -x # Enable command echo
command
command
set +x # Disable command echo

#!/bin/csh

set echo # Enable command echo
command
command
unset echo # Disable command echo

As stated in Section 2.6, Bourne shell family scripts do not source any start up scripts by default. Bourne shells only source files
like .shrc, .bashrc, etc. if the shell is interactive, i.e. the standard input is a terminal.

C shell and T shell scripts, on the other hand, will source .cshrc or .tcshrc by default. This behavior can be disabled using the -f
flag. Disabling this is usually a good idea, since the script may behave differently for different people, depending on what’s in
their .cshrc.

#!/bin/csh -ef

There are many other command-line flags and corresponding C shell variables. For more information, run "man sh", "man csh",
etc.

2.21 Arrays

Bourne shell does not support arrays, but some commands can process strings containing multiple words separated by white
space.

#!/bin/sh

names="Barney Bert Billy Bob Brad Brett Brody"
for name in $names; do

...
done

C shell supports basic arrays. One advantage of this is that we can create lists of strings where some of the elements contain
white space.

An array constant is indicated by a list enclosed in parenthesis.

Each array element is identified by an integer subscript.

We can also use a range of subscripts, separated by ’-’.

#!/bin/csh -ef

set names=("Bob Newhart" "Bob Marley" "Bobcat Goldthwait")
set c=1
while ($c <= $#names)

printf "$names[$c]\n"
@ c++

end

printf "$names[2-3]\n"

Unix Users’s Guide 146 / 177

Caution The foreach command is not designed to work with arrays. It is designed to break a string into white space-
separated tokens. Hence, given an array, foreach will view is as one large string and then break it wherever there is
white space, which could break individual array elements into multiple pieces.

The $argv variable containing command-line arguments is an array. Hence, the $#argv variable is not special to $argv, but just
another example of referencing the number of elements in an array.

2.22 Good and Bad Practices

A very common and very bad practice in shell scripting is checking the wrong information to make decisions. One of the most
common ways this bad approach is used involves making assumptions based on the operating system in use.

Take the following code segment, for example:

if [‘uname‘ == ’Linux’]; then
compiler=’gcc’
endian=’little’

fi

Both of the assumptions made about Linux in the code above were taken from real examples!

Setting the compiler to ’gcc’ because we’re running on Linux is wrong, because Linux can run other compilers such as clang
or icc. Compiler selection should be based on the user’s wishes or the needs of the program being compiled, not the operating
system alone.

Assuming the machine is little-endian is wrong because Linux runs on a variety of CPU types, some of which are big-endian.
The user who wrote this code probably assumed that if the computer is running Linux, it must be a PC with an x86 processor,
which is not a valid assumption.

There are simple ways to find out the actual endianness of a system, so why would we instead try to infer it from an unrelated
fact?? We should instead use something like the open source endian program, which runs on any Unix compatible system.

if [‘endian‘ == ’little’]; then

fi

2.23 Here Documents

We often want to output multiple lines of text from a script, for instance to provide detailed instructions to the user. For instance,
the output below is a real example from a script that generates random passphrases.

===
If no one can see your computer screen right now, you may use one of the
suggested passphrases about to be displayed. Otherwise, make up one of
your own consisting of three words separated by random characters and
modified with a random capital letters or other characters inserted.
===

We could output this text using six printf statements. This would be messy, though, and would require quotes around each line
of text.

We could also store it in a separate file and display it with the cat command:

#!/bin/sh -e

cat instructions.txt

Unix Users’s Guide 147 / 177

This would mean keeping track of multiple files, however.

A "here document", or "heredoc", is another form of redirection that is typically only used in scripts. It essentially redirects the
standard input to a portion of the script itself. The general for is as follows:

command << end-of-document-marker

end-of-document-marker

The end-of-document-marker can be any arbitrary text that you choose. This allows the text to contain literally anything. You
simply have to choose a marker that it not in the text you want to display. Common markers are EOM (end of message) or EOF
(end of file).

Heredocs can be used with any Unix command that reads from standard input, but are most often used with the cat command:

#!/bin/sh -e

cat << EOM
===
If no one can see your computer screen right now, you may use one of the
suggested passphrases about to be displayed. Otherwise, make up one of
your own consisting of three words separated by random characters and
modified with a random capital letters or other characters inserted.
===
EOM

Heredocs can also be used to create files from a template that uses shell or environment variables. Any variable references that
appear within the text of a heredoc will be expanded. The output of any command reading from a heredoc can, of course, be
redirected to a file or other device.

#!/bin/csh -ef

Generate a series of test input files with difference ending values
foreach end_value (10 100 1000 10000)

foreach tolerance (0.0001 0.0005 0.001)
cat << EOM > test-input-end_value-tolerance.txt

start_value=1
end_value=$end_value
tolerance=$tolerance
EOM

end
end

2.24 Common Unix Tools Used in Scripts

It is often said that most Unix users don’t need to write programs. The standard Unix commands contain all the functionality that
a typical user needs, so they need only learn how to use the commands and write simple scripts to utilize them.

The sections below introduce some of the popular tools with the sole intention of raising awareness. The details of these tools
would fill a separate book by themselves, so we will focus on simple, common examples here.

2.24.1 Grep

The grep command, short for General Regular exPressions, is a powerful tool for searching the content of text files.

Regular expressions are a standardized syntax for specifying patterns of text. They are similar to the globbing patterns dis-
cussed in Section 1.7.5, but the details are quite different. Also, while globbing patterns are meant to match file names, regular
expressions are meant to match strings in any context.

Some of the more common regular expression features are shown in Table 2.9.

Unix Users’s Guide 148 / 177

Token Matches
. Any character
[list] Any single character in list

[first-last]
Any single character between first and last, in the order
they appear in the character set in use. This may be
affected by locale settings.

* Zero or more of the preceding token
+ One or more of the preceding token

Table 2.9: Common Regular Expression Symbols

Note To match any special character, such as ’.’, or ’[’, precede it with a ’\’.

On BSD systems, a POSIX regular expression reference is available via man re_format.

On Linux systems, a similar document is available via man 7 regex.

Regular expression pattern matching can be used in any language. At the shell level, patterns are typically matched using the
grep command.

In short, grep searches a text file for patterns specified as arguments and prints matching lines.

grep pattern file-spec

Note Patterns passed to grep should usually be hard-quoted to prevent the shell from interpreting them as globbing patterns
or other shell features.

Show lines in Bourne shell scripts containing the string "printf"
grep printf *.sh

Show lines in C programs containing strings that qualify as variable names
grep ’[A-Za-z_][A-Za-z_0-9]*’ *.c

Show lines in C programs containing decimal integers
grep ’[0-9]+’ *.c

Show lines in C programs containing real numbers
grep ’[0-9]*\.[0-9]+’ *.c

By default, the grep command follows an older standard for traditional regular expressions, in order to maintain backward
compatibility in older scripts.

To enable the newer extended regular expressions, use grep -E or egrep.

To disable the use of regular expressions and treat each pattern as a fixed string, use grep -F or fgrep. This is sometimes useful
for better performance or to eliminate the need for ’\’ before special characters.

2.24.2 Stream Editors

Stream editors are a class of programs that take input from one stream, often standard input, modify it in some way, and send the
output to another stream, often standard output.

The sed (Stream EDitor) command is among the most commonly used stream editing programs. The sed has a variety of
capabilities for performing almost any kind of changes you can imagine. Most often, though, it is used to replace text matching
a regular expression with something else. Our introduction here will focus on this feature and we will leave the rest for tutorials
dedicated to sed.

The basic syntax of a sed command for replacing text is as follows:

Unix Users’s Guide 149 / 177

sed -e ’s|pattern|replacement|g’

The -e flag specifies the use of traditional regular expressions. To use the more modern extended regular expressions, use -E as
with grep.

The ’s’ is the ’substitute’ command. Other commands, not discussed here, include ’d’ (delete) and ’i’ (insert).

The ’|’ is a separator. You can use any character as the separator as long as all three separators are the same. This allows any
character to appear in the pattern or replacement text. Just use a separator that is not in either. The most popular separators are
’|’ and ’/’, since they usually stand out next to typical patterns.

The pattern is a regular expression, just as we would use with grep. Again, special characters that we want to match literally
must be escaped (preceded by a ’\’).

The replacement text is not a regular expression, but may contain some special characters specific to sed. The most common is
’&’, which represents the current string matching the pattern. This feature makes it easy to add text to strings matching a pattern,
even if they are not the same.

The ’g’ means perform a global replacement. If omitted, only the first match on each line is replaced.

Get snooty
sed -e ’s|Bob|Robert|g’ file.txt > modified-file.txt

Convert integer constants to long constants in a C program
sed -e ’s|[0-9]+|&L|g’ prog.c > prog-long.c

The tr (translate) command is a simpler stream editing tool. It is typically used to replace or delete individual characters from a
stream.

Capitalize all occurrences of ’a’, ’b’, and ’c’
tr ’abc’ ’ABC’ file.txt > file-caps.txt

Delete all digits from a file
tr -d ’0123456789’ file.txt > file-qless.txt

2.24.3 Tabular Data Tools

Unix systems provide standard tools for working with tabular data (text data organized in columns).

The cut command is a simple tool for removing a portion from each line of a text stream. The user can specify byte, character,
or field positions to be removed.

Remove the 3rd and 4th characters from every line
cut -c 3-4 file.txt > chopped-file.txt

Remove the first column of numbers separated by white space
cut -w -f 1 results.txt > results-without-col1.txt

The awk command is an extremely sophisticated tool for manipulating tabular data. It is essentially a non-interactive spreadsheet,
capable of doing modifications and computations of just about any kind.

Awk includes a scripting language that looks very much like C, with many extensions for easily processing textual data.

Entire books are available on awk, so we will focus on just a few basic examples.

Awk is generally invoked in one of two ways. For very simple awk operations (typically 1-line scripts), we can provide the awk
script itself as a command-line argument, usually hard-quoted:

awk [-F field-separator] ’script’ file-spec

For more complex, multi-line scripts, it may prove easier to place the awk script in a separate file and refer to it in the command:

Unix Users’s Guide 150 / 177

awk [-F field-separator] -f script.awk file-spec

Input is separated into fields by white space by default, but we can specify any field-separator we like using the -F. The field
separator can also be changed within the awk script by assigning the special variable FS.

Statements within the awk script consist of a pattern and an action.

Patterns may be relational expressions comparing a given field (column) to a pattern. In this case, the action will be invoked only
on lines matching the pattern.

If pattern is omitted, the action will be performed on every line of input.

The special patterns BEGIN and END are used to perform actions before the first line is processed and after the last line is
processed.

The action is essentially a C-like function. If omitted, the default action is to print the entire line matching pattern. (Hence, awk
can behave much like grep.)

Example 1: A simple awk command

Print password entries for users with uid >= 1000
shell-prompt: awk -F : ’$3 >= 1000 { print $0 }’ /etc/passwd
nobody:*:65534:65534:Unprivileged user:/nonexistent:/usr/sbin/nologin
joe:*:4000:4000:Joe User:/home/joe:/bin/tcsh

Example 2: A separate awk script

Initialize variables
BEGIN {

sum1 = sum2 = 0.0;
}

Add column data to sum for each line
{

print $1, $2
sum1 += $1;
sum2 += $2;

}

Output sums after all lines are processed
END {

printf("Sum of column 1 = %f\n", sum1);
printf("Sum of column 2 = %f\n", sum2);

}

shell-prompt: cat twocol.txt
4.3 -2.1
5.5 9.0
-7.3 4.6

shell-prompt: awk -f ./sum.awk twocol.txt
4.3 -2.1
5.5 9.0
-7.3 4.6
Sum of column 1 = 2.500000
Sum of column 2 = 11.500000

2.24.4 Sort/Uniq

The sort command is a highly efficient, general-purpose stream sorting tool. It sorts the input stream line-by-line, optionally
prioritizing the sort by one or more columns.

Unix Users’s Guide 151 / 177

shell-prompt: cat names.txt
Kelso Bob
Cox Perry
Dorian John
Turk Christopher
Reid Elliot
Espinosa Carla

Sort by entire line
shell-prompt: sort names.txt
Cox Perry
Dorian John
Espinosa Carla
Kelso Bob
Reid Elliot
Turk Christopher

Sort by second column
shell-prompt: sort -k 2 names.txt
Kelso Bob
Espinosa Carla
Turk Christopher
Reid Elliot
Dorian John
Cox Perry

Shell-prompt: cat numbers.txt
45
-12
32
16
7
-12

Sort sorts lexically by default
Shell-prompt: sort numbers.txt
-12
-12
16
32
45
7

Sort numerically
Shell-prompt: sort -n numbers.txt
-12
-12
7
16
32
45

The uniq command eliminates adjacent duplicate lines from the input stream.

Shell-prompt: uniq numbers.txt
45
-12
32
16
7
-12

Unix Users’s Guide 152 / 177

Shell-prompt: sort numbers.txt | uniq
-12
16
32
45
7

2.24.5 Perl, Python, and other Scripting Languages

All of the commands described above are described by the POSIX standard and included with every Unix compatible operating
system.

A wide variety of tasks can be accomplished without writing anything more than a shell script utilizing commands like these.

Nevertheless, some Unix users have felt that there is a niche for tools more powerful than shells scripts and standard Unix
commands, but more convenient than general-purpose languages like C, Java, etc.

As a result, a new class of scripting languages has evolved that are somewhat more like general-purpose languages. Among the
most popular are TCL, Perl, PHP, Python, Ruby, and Lua.

These are interpreted languages, so performance is much slower than a compiled language such as C. However, they are self-
contained, using built-in features or library functions instead of relying on external commands such as awk and sed. As a result,
many would argue the they are more suitable for writing sophisticated scripts that would lie somewhere between shell scripts and
general programs.

Unix Users’s Guide 153 / 177

Part I

Systems Management

Unix Users’s Guide 154 / 177

Chapter 3

Systems Management

3.1 Guiding Principals

Decisions should be based on objective goals, such as

• Improving performance

• Improving reliability (which should also be viewed as part of performance)

• Reducing maintenance cost

• Making all hardware expendable. What end-users ultimately need is access to the programs that do what they need. If a
computer they are using to run those programs becomes inaccessible for any reason, it should be easy for them to use another
one. Package managers, discussed in Chapter 6, help us achieve this sort of independence. All too often, however, people
end up in a panic, unable to get work done, because of a hardware failure. This situation is almost always a symptom of poor
systems management.

Apply the KISS principal (Keep It Simple, Stupid) to avoid wasted time and effort on unnecessary complexity.

Unfortunately, many IT professionals are driven by ego or other irrational motives and decisions are based on emotional objectives
such as

• Using their favorite tool (solutions looking for problems)

• Favoring the complex solution to make themselves look smart

Top-notch systems managers aim to make everything easily reproducible. All hardware then becomes expendable, because the
functionality it provides can be quickly replicated on another machine. This means automating configurations using shell scripts
or other tools, and keeping back-ups of important data. Using proprietary tools that may not be around in the future can be a
grave mistake. Make sure your automation and backup tools will be readily available as long as you need them.

It’s normal to struggle with something the first time you do it. It’s incompetent to struggle with it the second time.

Top systems managers also understand how their systems work in detail, so when something does go wrong, they know exactly
what to do and can fix it instantly.

Apply the principles of the engineering life cycle, discussed in [?]. Start by throwing out all assumptions about design and
implementation of IT solutions, such as which language or operating system will be used. First examine the specification: What
does the end-user need to do? Will it be done once, twice, or many times? Then consider ALL viable alternatives from counting
on your fingers, to scribbling on paper, to using a supercomputer. Which is the cleanest, simplest, most cost-effective way to
enable it?

Unix Users’s Guide 155 / 177

3.2 Attachment is the Cause of All Suffering

If you’re averse to reinstalling your OS from scratch, get over it.

Trying to keep an existing installation running too long is a bad idea for a variety of reasons.

• All hardware fails eventually. Therefore, you should always have your important files backed up in another location and should
always be prepared to rebuild your setup on a new disk and restore from backup.

• File systems more than a couple years old can suffer from "bit rot", where the disk is still functional, but some of the bits have
faded to the point of being uncertain. For this reason, it’s a bad idea to perform OS upgrade after OS upgrade. Instead, the disk
should be wiped clean at least once every few years and everything reinstalled from scratch, to "freshen the bits".

• Practice makes perfect. If you avoid doing fresh installs, you will lack the skills needed when it becomes necessary and struggle
to recover from hardware failures. If, on the other hand, you do fresh installs frequently, a disk or system failure will not be a
big deal to you. Replace the failed hardware and be back in action in an hour or two in most cases.

Unix Users’s Guide 156 / 177

Chapter 4

Platform Selection

4.1 General Advice

No matter what operating system you use, you are going to have problems.

What you need to decide is what kinds of problems you can live with.

System crashes are the worst kind of problem for scientific computing, where analyses and simulations may takes days, weeks,
or even months to run. If a system crash occurs when a job has been running for a month, someone’s research may be delayed
by a month (unless their software uses checkpointing, allowing it to be resumed from where it left off).

Reliability must be considered as a major factor when assessing the performance of a system. Long-term throughput (work
completed per unit time) is heavily impacted by systems outages that cause jobs to be restarted.

It doesn’t really matter why a system needs to be rebooted. It could be due to system freezes, panics (kernel detecting unrecov-
erable errors), or security updates so critical that they cannot wait. Systems that need to be rebooted frequently for any of these
reasons should be considered less reliable.

Uptime, the time a system runs between reboots, should be monitored to determine reliability. The average uptime for popular
operating systems varies from days to months.

System crashes are also the worst for IT staff who manage many machines. Suppose you manage 30 machines running an
operating system that offers and average up time of a month or two. This means you have to deal with a system crash every day
or two on average (unless you reboot machines for other reasons in the interim).

This is exactly the situation I experienced while supporting fMRI research using cutting-edge Linux distributions, such as Redhat
(not Redhat enterprise, but the original Redhat, which evolved into Fedora), Mandrake, Caldera, SUSE (again, the original, not
SUSE Enterprise).

Some of our Linux workstations would run for months without a problem while others were crashing every week. NFS servers
running several different distributions would consistently freeze under heavy load. Systems would freeze for a few minutes at a
time while writing DVD-RAMs. These were pristine installations with no invasive modifications. It’s not anything we did to the
systems, but just the nature of these cutting-edge distributions.

This is a fairly common issue. Some research groups resort to scheduled reboots in order to maximize likely up times from the
moment an analysis was started. The HTCondor scheduler has an option to reboot a compute host after a job finishes for similar
reasons.

This is in no way a criticism of cutting-edge Linux distributions. They play an important role in the Unix ecosystem, namely as a
platform for testing new innovations. We need lots of people using new software systems in order to shake out most of the bugs
and make it enterprise-ready, and cutting-edge Linux distributions serve this purpose very well. Many people want to try out the
latest new features and don’t need a system that can run for months without a reboot. In fact, most of them probably upgrade and
reboot their systems every week or so, and as a result, rarely experience a system crash.

However, no operating system is the best at everything, and cutting-edge Linux distributions are not the best at providing stability.
Some glitches should be expected from anything on the cutting edge.

Unix Users’s Guide 157 / 177

For the average user maintaining one or two systems for personal use or development, the stability of a cutting-edge Linux system
is generally more than adequate.

For scientists running simulations that take months or IT staff managing many systems, it could be a major nuisance.

One solution is to run an Enterprise Linux distribution, such as Redhat Enterprise, is described in Section 4.3, or SUSE Enterprise.

Another is to run a different Unix variant, such as FreeBSD, described in Section 4.4. This is the route we chose in our fMRI
research labs, and it solved almost all of our stability issues. FreeBSD has always been extremely reliable and secure. System
crashes are extremely rare. Almost every system crash I’ve experienced has been traced to a hardware problem or a configuration
error on my part. Critical security updates, in my experience, occur less frequently than other systems such as Windows and
Linux. If you’re looking for a "set and forget" operating system to make your sysadmin duties easy, FreeBSD is a great option.

In addition to choosing an operating system that focuses on reliability, you may want to invest in a UPS and a RAID to protect
against power outages and disk failures. If you’re really worried, some systems also offer fault-tolerant RAM configurations,
using some RAM chips for redundancy, akin to RAIDs.

4.2 Choosing Your Unix the Smart Way

Ultimately, the only thing that matters with respect to which Unix system you use is how well it runs the programs you need.

Many people make the mistake of choosing an operating system based on how "nice" it looks, what their friends (who often are
not very computer savvy) are using, or how easy it is to install.

What’s really important, though, is what happens after the system is up and running. The effort required to maintain it over the
course of a couple years is by far the lion’s share of the total cost of ownership, so get informed about what that cost will be for
your particular needs before deciding.

Each operating system has its own focus, which may be very different from the rest.

The free operating systems include several systems based on BSD (Berkeley Systems Distribution), a free derivative of the
original AT&T Unix from the University of California, Berkeley. It is the basis for FreeBSD, Mac OS X, NetBSD, OpenBSD,
and a few others.

FreeBSD is the most popular among the free BSD-based systems. FreeBSD is known for its speed, ease of setup, robust network
stack, and most of all its unparalleled stability. It is the primary server operating system used by Netflix, and WhatsApp. Netflix
alone accounted for more than 1/3 of streaming Internet traffic in North America in 2015. (See http://appleinsider.com/articles/-
16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes) FreeBSD is also the ba-
sis of advanced file servers such as FreeNAS, Isilon, NAS4Free, NetApp, and Panasas, and network equipment from Juniper
Networks, and the open source pfSense firewall.

The FreeBSD ports system makes it trivial to install any of more than 30,000 packages, including most mainstream scientific
software. FreeBSD ports can be installed automatically either from a binary package, or from source code if you desire different
build options than the packages provide.

Mac OS X is essentially FreeBSD with Apple’s proprietary user interface, so OS X users already have a complete Unix system on
their Mac. In order to develop programs under Mac OS, you will need to install a compiler. Apple’s development system, called
Xcode, is available as a free download. The free and open source MacPorts system offers the ability to easily install thousands of
software packages directly from the Internet. The MacPorts system is one of the most modern and robust ports systems available
for any operating system. There are also other package managers for Mac OS X, such as Fink, Homebrew, and Pkgsrc.

There are many free Linux distributions, as well as commercial versions such as Red Hat Enterprise and SUSE Enterprise. The
most popular free distributions for personal use are currently Mint and the Ubuntu line (Ubuntu, Kubuntu, and Xubuntu), which
are based on Debian Linux. These systems are known for their ease of installation and maintenance, and cutting-edge new Linux
features. Systems based on Debian Linux support the Debian packages system, which offers more than 40,000 packages available
for easy installation.

http://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes
http://appleinsider.com/articles/16/01/20/netflix-boasts-37-share-of-internet-traffic-in-north-america-compared-with-3-for-apples-itunes

Unix Users’s Guide 158 / 177

Caution Be careful about judging the popularity of different operating systems based on package counts. The Debian
packages collection is somewhat inflated by the fact that they tend to split a single software distribution into several
packages. For example, libraries are typically provided by at least three packages, a base package for only the run time
components (shared libraries), a -devel package for building your own programs with the library (header files), and a
-doc package containing man/info pages, HTML, PDF, etc. Some libraries are further split into single/double precision
libs, core and optional components, etc. Many other package systems, such as FreeBSD ports and pkgsrc, tend to
provide all library components in a single package.

Gentoo Linux is a Linux system based heavily on ports. The Gentoo system installation process is very selective, and results in
a compact, efficient system for each user’s particular needs. Gentoo is not as easy to install as other Linux systems, but is a great
choice for more experienced Linux users who want to maximize performance and stability. Like FreeBSD and Debian, Gentoo’s
ports system, known as portage, offers automated installation of nearly 20,000 software packages at the time of this writing.

The NetBSD project is committed to simplicity and portability. For this reason, NetBSD runs on far more hardware configurations
than any other operating system.

The OpenBSD is run largely be computer security experts. Core security software such as OpenSSL and OpenSSH are developed
by the OpenBSD project and used by most other operating systems.

Redhat Enterprise and SUSE Enterprise Linux are more conservative Linux-based systems designed to provide the stability
required in enterprise environments. They are popular in corporate and academic data centers, where they support critical
services, often running commercial software applications. They do not include the latest cutting edge Linux features, as doing
so would jeopardize the stability they are meant to provide. They are based on older Linux kernels and system tools, which have
been well-tested and debugged by users of cutting-edge Linux systems over several years.

4.3 RHEL/CentOS Linux

Redhat Enterprise Linux is a Linux distribution designed for reliability and long-term binary compatibility. Redhat, Inc. took
a lot of heat during the 1990s for the inadequate stability of their product. In response, they invented Redhat Enterprise Linux
(RHEL) in 2000.

Community Enterprise Linux (CentOS), essentially a free version of RHEL, had its first release in 2004. These systems are
created by taking a snapshot of Fedora and spending a lot of time fixing bugs, without upgrading the core tools, which might
introduce new bugs. Hence, they run older kernels, compilers, and core libraries like libc.

RHEL, CentOS and their derivatives are used on the vast majority of HPC clusters.

They are also used in data centers around the world to provide all kinds of services needed to keep business, governments, and
other organizations running.

One of their major advantages is full support for many commercial scientific software, most of which are supported only on
Windows, Mac, and Enterprise Linux.

Enterprise Linux is also more stable than cutting-edge Linux systems. Many Linux users are unaware of this fact, because it is
not relevant to them. In my own experience, most Linux systems will provide average up times of a month or two, which is far
more than the average computer user needs. Many people will install updates and reboot about once a week anyway, so they will
rarely experience a system crash.

One of the disadvantages of Enterprise Linux is that they use older kernels, compilers, standard libraries, and other tools. This
makes it difficult to build and run the latest open source software on Enterprise Linux.

The pkgsrc package manager, discussed in Section 6.4.3 can be a big help overcoming this limitation.

4.4 FreeBSD

Stability and performance are the primary goals for the FreeBSD base system.

Unix Users’s Guide 159 / 177

FreeBSD seems to often be the target of false criticism from people who have little or no experience with it. If someone tells you
that FreeBSD is "way behind", "not up to snuff", etc., take the Socratic approach: Ask them to describe some of its shortcomings
in detail and watch them demonstrate their lack of knowledge.

In reality, FreeBSD is a very powerful, enterprise-class operating system, used in some of the most demanding environments on
the planet. A short list of FreeBSD-based products and services you may be familiar with is below. See https://en.wikipedia.org/-
wiki/List_of_products_based_on_FreeBSD for a more complete list.

• Netflix content servers, which alone are responsible for a large portion of all the Internet traffic in North America

• Large cloud services companies such as New York Internet and Webair

• Dell Compellent, FreeNAS, Isilon, NAS4Free, NetApp, and Panasas high-performance storage systems

• Juniper network equipment

• mOnOwall, OPNsense, Nokia IPSO, pfSense firewalls

• Trivago and Whatsapp servers

• CellOS (Playstation 3), and Orbis OS (Playstation 4)

You may hear that FreeBSD is not as cutting-edge as some of the Linux distributions popular for personal use. This may be
true from certain esoteric perspectives, but the reality is that only a tiny fraction of programs require cutting-edge features that
FreeBSD lacks and FreeBSD is capable of running virtually all the same programs as any Linux distribution, with little or no
modification.

A reliable platform on which to run them is far more important in scientific computing and there is no general-use operating
system more reliable than FreeBSD.

Enterprise Linux offers comparable reliability, but FreeBSD offers newer compilers and libraries than Enterprise Linux, making
it easier to build and run the latest open source software.

The FreeBSD ports collection offers one of the largest available collections of cutting-edge software packages that can be installed
in seconds with one simple command. Users can also choose between using the latest packages or packages from a quarterly
snapshot of the collection for the sake of stability in their add-on packages as well as the operating system itself. The quarterly
snapshot’s receive bug fixes, but not upgrades, much like Enterprise Linux distribution.

FreeBSD ports can be easily converted to pkgsrc packages for deployment on Enterprise Linux and other Unix-compatible
systems.

FreeBSD has a Linux compatibility system based on CentOS. It can run most closed-source software built on RHEL/CentOS, al-
though complex packages (e.g. Matlab) may be tricky to install. Ultimately, though, FreeBSD is actually more binary-compatible
with RHEL than most Linux distributions. It uses tools and libraries straight from the CentOS Yum repository. The RPMs there
are easily converted to FreeBSD ports for quick, clean deployment on FreeBSD systems.

Note that the compatibility system is not an emulation layer. There is no performance penalty for running Linux binaries on a
FreeBSD system, and in fact some Linux executables may run faster on FreeBSD than they do on Linux. The system consists of
a kernel module to support system calls that exist only in Linux, and the necessary run time tools and libraries to support Linux
executables. The system only requires a small amount of additional RAM for the kernel module and disk space for Linux tools
and libraries.

Hence, if you are running mostly open source and one or two closed-source Linux applications, FreeBSD may be a good platform
for you. If you are running primarily complex closed-source Linux applications (Matlab, ANSYS, Abaqus, etc.), you will likely
be better off running an Enterprise Linux system.

ZFS is fully-integrated into the FreeBSD kernel, and is becoming the primary file system for FreeBSD. The FreeBSD installer
makes it easy to configure and boot from a ZFS RAID.

The UFS2 file system is still fully supported, and a good choice for those who don’t want the high memory requirements of ZFS.
UFS2 has many advanced features, such as an 8 ZiB file system capacity, soft updates (which ensure file system consistency
without the use of a journal), an optional journal for quicker crash recovery, and backgrounded file system checks (which allow
the file system to be checked and repaired while in-use, eliminating boot delays even if the journal cannot resolve consistency
issues).

https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD
https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD

Unix Users’s Guide 160 / 177

There are many other advanced features and tools such as FreeBSD jails (a highly developed container system), bhyve, qemu,
VirtualBox, and Xen for virtualization, multiple firewall implementations, network virtualization, and mfiutil for managing LSI
MegaRAID controllers, to name a few.

FreeBSD is a great platform for scientific computing in its own right, especially for running the latest open source software. It’s
also a great sandbox environment for testing software that may later be run on RHEL/CentOS via pkgsrc.

4.5 Running a Desktop Unix System

Most mainstream operating systems today are Unix compatible. Microsoft Windows is the only mainstream operating system that
is not Unix compatible, but there are free compatibility systems available for Windows to provide some degree of compatibility
and interoperability with Unix.

The de facto standard of Unix compatibility for Windows is Cygwin, http://cygwin.com, which is free and installs in about 10
minutes. There are alternatives to Cygwin, but Cygwin is the easiest to use and offers by far the most features and software
packages.

Note None of the Unix compatibility systems for Windows are nearly as fast as a genuine Unix system on the same hardware,
but they are fast enough for most purposes. If you want to maximize performance, there are many BSD Unix and Linux systems
available for free.

Another option for running Unix programs on a Windows computer is to use a virtual machine (VM). This is discussed in
Chapter 7.

Lastly, many Windows programs can be run directly under Unix, without a virtual machine running Windows, if the Unix system
is running on x86-based hardware. This is accomplished using WINE, a Windows API emulator. WINE attempts to emulate the
entire Windows system, as opposed to virtual machines, which emulate hardware. Emulating Windows is more ambitious, but
eliminates the need to install and maintain a separate Windows operating system. Instead, the Windows applications run directly
under Unix, with the WINE compatibility layer between them and the Unix system.

While it is possible to create a Unix-like environment under Windows using a system such as Cygwin, such systems have some
inherent limitations in their capabilities and performance. Installing a Unix-compatible operating system directly has many
benefits, especially for those developing their own code to run on the cluster.

Many professional quality Unix-based operating systems are available free of charge, and with no strings attached. These systems
run a wide variety of high-quality free software, as well as many commercial applications. Hence, it is possible for researchers
to develop Unix-compatible programs at very low cost that will run both on their personal workstation or laptop, and a cluster or
grid.

One of the easiest Unix systems to install and manage is GhostBSD, a free, open source derivative of FreeBSD with a simple
graphical installer, "Control Panel", and software manager:

http://cygwin.com

Unix Users’s Guide 161 / 177

A GhostBSD system running XFCE desktop.

GhostBSD is extremely easy to install and manage, as well as extremely reliable. If you want to try out Unix while encountering
as few hurdles as possible, GhostBSD is probably your best bet.

Similar to GhostBSD are the Ubuntu family of Linux systems (Ubuntu, Kubuntu, Xubuntu, Edubuntu, ...). Each of these Linux
distributions is built on Debian Linux, with a different desktop environment. (Ubuntu uses Gnome, Kubuntu KDE, Xubuntu
XFCE, etc.)

Another alternative for the slightly more computer-savvy is to do a stock FreeBSD installation and then install and run the
sysutils/desktop-installer port. This option simply helps you easily configure FreeBSD for use as a desktop system using standard
tools provided by the system and FreeBSD ports. The whole process can take as little as 15 minutes on a fast computer with a
fast Internet connection. Just run desktop-installer from a terminal and answer the questions.

A FreeBSD system running Lumina desktop.

http://acadix.biz/desktop-installer.php

Unix Users’s Guide 162 / 177

The Debian system itself has also become relatively easy to install and manage in recent years. It lacks some of the bells and
whistles of Ubuntu, but may be a bit faster and more stable as a result.

A Debian system running XFCE desktop.
All of these systems have convenient methods for installing security updates and minor software upgrades.

When it comes time for a serious upgrade of the OS, don’t bother with upgrade tools. Back up your important files, reformat the
disk, do a fresh install of the newer version, and restore your files.

Many hours are wasted trying to fix systems that have been broken by upgrades or were broken before the upgrade. It would
have been faster and easier in many cases to run a backup and do a fresh install. You will need to do fresh installs sometimes
anyway, so you might as well become good at it and use it as your primary method.

4.6 Unix File System Comparison

Windows file systems become fragmented over time as file are created and removed. Windows users should therefore run a
defragmentation tool periodically to improve disk performance.

Unix file systems, in contrast, do continuous defragmentation, so performance will not degrade significantly over time.

Overwrite performance on some file systems is slower than initial write. Hence, removing files before overwriting them may
help program run times.

Most Unix systems offer multiple choices for file systems. Most modern file systems use journaling, in which data that is critical
to maintaining file system integrity in the event of a system crash is written to the disk immediately instead of waiting in a
memory buffer.

To save time, this data is queued to a special area on the disk known called the journal. Writing to a journal is faster than saving
the data in it’s final location, since it requires fewer disk head movements.

Journaling reduces write performance, since data is first written to a journal and later moved to its final location. This takes
more time and more disk head movements than storing data in a memory buffer until it is written to its final location. However,

Unix Users’s Guide 163 / 177

the performance penalty is marginal if done intelligently. All modern Unix file systems use advanced journaling methods to
minimize the performance hit and disk wear.

Popular file systems:

• EXT is the most commonly used file system on Linux systems. EXT3 was the first to including journaling, basically as a
feature added to EXT2. EXT2 was notorious for incredibly slow file system checks and repairs. The journaling features added
by EXT3 greatly reduced the need for repairs, but EXT3 is not the best performer overall and is also hard on disks due to
excessive head movements.

EXT4 represents a vast improvement over EXT3 due to major redesign of key components. Performance and reliability are
solid.

• HFS is the file system used by Mac OS X. Features and performance are generally positive. One potential problem for Unix
users is the lack of true case-sensitivity. HFS is case-preserving, but not case-sensitive. This means that if you create a file
named "Tempfile", the "T" will be remembered as a capital. However, it is not distinguished from a lower-case "t", so the
file may be referred to as "tempfile". Also, you cannot have two files in the same directory called "Tempfile" and "tempfile",
because these two file names are considered the same.

• UFS (Unix File System) evolved from the original Unix system 7 file system and is now used by most BSD systems as well as
some commercial systems such as SunOS/Solaris and HP-UX.

FreeBSD’s UFS2 includes a unique feature called soft updates, which protects file system integrity in the event of a system
crash without using a journal. This allows UFS2 to exhibit better write performance and less disk wear.

• XFS is a file system developed by SGI for it’s commercial IRIX operating system during the 1990s, which were popular for
high-end graphics. SGI IRIX machines were used to develop and featured in the movie Jurassic Park.

XFS has been fully integrated into Linux and is now used as an alternative to EXT4 where high performance and very large
partitions are desired.

• ZFS is a unique combination of a file system combined with a volume manager, developed by Sun Microsystems.

ZFS is widely regarded as the most advanced file system to date. One of its most unique features is the fact that it does not
require partitioning the disk in order to separate file systems. With other file systems, if you want home and /var to be separated
and utilize different settings, you must divide the disk into separate partitions. Choosing the optimal size for each partition is
almost impossible since we cannot predict the space requirements of the future. With ZFS, you can create multiple file systems,
each with its own settings, all of which allocate blocks from the same pool. Thus, you never run out of space in one file system
while having unutilized space in others. ZFS also offers advanced software RAID that generally outperforms hardware RAID
systems, and many other advanced features such as compression and encryption.

ZFS has been fully integrated into FreeBSD and is now the default file system for high-end FreeBSD servers as well as the
GhostBSD desktop system. ZFS does require a lot of RAM, however, so UFS2 is still a better choice for low-end hardware
such as net books and embedded FreeBSD systems.

4.7 Network File System

Network File System, or NFS, is a standard Unix network protocol that allows disk partitions on one Unix to be directly accessed
from other computers. In concept, NFS is similar to Apple’s AFS and Microsoft’s SMB/CIFS.

Access to files across an NFS link is generally somewhat slower than local disk access, due to the overhead of network com-
munication. Speed may be limited either by the local disk performance on the NFS server or by the bandwidth of the network.
For example, of an NFS server has a RAID that can deliver 500 megabytes per second locally and a 1 gigabit (~100 megabyte
per second) network, then the disk performance seen by NFS clients will be limited by the network to about 100 megabytes per
second.

Unix systems also allow other computers to access their disks using non-Unix protocols like AFS and SMB/CIFS if necessary.
For example, Samba is an open source implementation of the SMB/CIFS protocol that allows Windows computers to access data
on Unix disks.

Unix Users’s Guide 164 / 177

Chapter 5

System Security

5.1 Securing a new System

• Configure firewall or TCP wrappers to allow incoming traffic from only specific hosts.

• Create ONE account with administrator rights and use it only for system updates and software installations.

• Do not share login accounts. Create SEPARATE accounts for each user, without administrator rights, and use them for all
normal work.

• NEVER share your password with ANYONE. PERIOD. NOBODY should ever ask you for your password. Other users have
no right to mess with your login account. IT staff with rights to manage a machine do not need your password, so be suspicious
if they ask for it.

• Store passwords in KeePassX or a similar encrypted password vault. Use a strong password for each KeePassX database.

• If you set up a computer to allow remote access, use ONLY systems that encrypt ALL traffic. If you are not sure your remote
access software encrypts everything, DO NOT ENABLE IT. Talk to a professional about how to securely access the computer
remotely before allowing it.

5.2 I’ve Been Hacked!

If you suspect that your computer has been hacked, unplug it from the network (or disable WiFi), but do not turn it off. Call your
local computer security experts, and do not touch the computer until they arrive.

Once a computer has been hacked, that operating system installation is finished. Don’t even think about trying to patch your
way out of it. The only way to clean a hacked system is by backing up your files, reformatting the hard disk, reinstalling,
and changing every password that was ever typed on the computer, whether it was a local password or a password on another
computer someone connected to fro the hacked computer.

Antivirus and other antimalware software only detects known malware. If a hacker installs a custom program of their own design,
it will not be detected.

There are many sites listing the steps you need to take, but most are incomplete. Below is a fairly comprehensive list.

1. Unplug the computer from the network to cut off the hacker’s access immediately.

2. Stop using the computer. Especially, do not use the computer to log into any other computers over the network, as you will
likely be giving away your passwords to those machines as you type them.

3. USING A DIFFERENT COMPUTER, immediately change your passwords on every other computer that you have ever
connected to from the hacked computer. Every password that has ever been typed on the hacked machine must be changed,
as the hacker may have been monitoring all of your keystrokes for a long time before the intrusion was detected. That
includes local passwords on the PC as well as passwords entered on the PC to log into remote machines.

Unix Users’s Guide 165 / 177

4. If you have IT staff trained in computer security, contact them. They may want to do a forensic analysis on the machine to
determine who hacked it and how.

5. Back up your data files. Note that they may have been corrupted by the hacker, so check them carefully before relying on
them.

6. Do not back up any programs, scripts, installation media, or configuration files. They may be infected with malware and
restoring them to the newly installed system will allow the hacker right back in. Antivirus and other antimalware programs
do not detect all malware. Don’t think for a minute the your computer is clean just because your virus scan didn’t find
anything. This is foolish wishful thinking that will only cause more problems for you and others around you.

7. Reformat all disks in the computer and reinstall the operating system from trusted install media. (Do not use install media
that was stored on the hacked computer!)

8. Do not use any of the same passwords on the new installation. Create new passwords for every user and every application
on the computer.

9. Restore your data files from backup.

10. Reinstall all programs from trusted installation media.

Unix Users’s Guide 166 / 177

Chapter 6

Software Management

6.1 The Stone Age vs. Today

There are many thousands of quality open source applications and libraries available for Unix systems.

Just knowing what exists can be a daunting task. Fortunately, software management systems such as the FreeBSD ports
have organized documentation about what is available. You can browse software packages by category on the ports website:
http://www.freebsd.org/ports/index.html. Even if you don’t use FreeBSD, this software listing is a great resource just for finding
out what’s available.

Installing various open source packages can also be a daunting task, especially since the developers use many different program-
ming languages and build systems.

Many valuable man-hours are lost to stone-age software management, i.e. manually downloading, unpacking, patching, building,
and installing open source software.

Free software isn’t very free if it takes 20 hours of someone’s time to get it running. An average professional has a total cost to
their employer on the order of $50/hour. Hence, 20 hours of their time = $1,000. If 1,000 professionals around the world spend
an average of 20 hours installing the same software package, then $1,000,000 worth of highly valuable man-hours have gone to
waste. Even worse, many people eventually give up on installing software entirely, so there are no gains to balance this loss.

In most cases, the software could have been installed in seconds using a software management system (SMS) and all that time
could have been spent doing something productive.

When choosing a Unix system to run, a good ports or packages system is an important consideration. A ports or packages system
automatically downloads and installs software from the Internet. Such systems also automatically install additional prerequisite
ports or packages required by the package you requested.

For example, to install Firefox, you would first need to install dozens of libraries and other utilities that Firefox requires in order
to run properly. (When you install Firefox on Windows or Max OS X, you are actually installing a bundle of all these packages.
)

The ports or packages system will install all of them automatically when you choose to install Firefox. This allows you install
software in seconds or minutes that might otherwise take days or weeks for an inexperienced programmer to manually download,
patch, and compile.

6.2 Goals

Complete execution well before deadline.

Minimize man-hours.

Maximizing execution speed of every program is a foolish waste of resources.

Focus on big gains, 80/20 rule (Pareto principal). 20% of effort typically yields 80% of gains. Don’t waste time or hardware
trying to squeeze out marginal gains unless it’s really necessary. If it won’t mean meeting a deadline that would otherwise be
missed, or free up saturated resources, then it’s a waste.

http://www.freebsd.org/ports/index.html

Unix Users’s Guide 167 / 177

6.3 The Computational Science Time Line

The figure below represents the time line of a computational science project.

Development Time Deployment Time Learning Time Run Time
Hours to years Hours to months (or never) Hours to weeks Hours to months

Table 6.1: Computation Time Line

6.3.1 Development Time

Not relevant to most researchers.

Learn software development life cycle, efficient coding and testing techniques.

Understand objective language factors; compiled vs interpreted speed, portability, etc.

6.3.2 Deployment Time

Deployment time virtually eliminated by package managers, described in Section 6.4.

6.3.3 Learning Time

Largely up to end-user.

IT staff can help organize documentation and training.

6.3.4 Run Time

Software efficiency (algorithms, language selection) should always be the first focus. Often software can be made to run many
times faster simply by changing the inputs. Is the resolution of your fluid model higher than you really need? Are you analyzing
garbage data along with the useful data? Is your algorithm implemented in an interpreted language such as Matlab, Perl, or
Python? If so, it might run 100 times faster if rewritten in C, C++, or Fortran. See [?].

System reliability (system crashes cause major setbacks, especially where check pointing is not used). Operating system,
(FreeBSD, ENTERPRISE Linux), UPS.

Some scientific analyses take a month or more to run. FSL, single-threaded. Average up time of 1 month is not good enough.

From the researcher’s perspective, this may mean restarting simulations or analyses, losing weeks worth of work if check pointing
is not possible.

From the sysadmin’s perspective, if managing 30 machines with an average up time of 1 month, you average 1 system crash per
day.

Some choose scheduled reboots to maximize likelihood of completing jobs. Better to do your homework and find an operating
system with longer up times.

Parallelism is expensive in terms of both hardware and learning curve. It should be considered a last resort after attempting to
improve software performance.

Unix Users’s Guide 168 / 177

6.4 Package Managers

6.4.1 Motivation

A package manager is a system for installing, removing, upgrading or downgrading software packages. They ensure that proper
versions of dependency software are installed and keep track of all files installed as part of the package.

A caveman installation is an installation performed by downloading, patching, building and installing software manually or via
a custom script that is not part of a package manager. This is a temporary, isolated solution.

A package added to a package manager is a permanent, global solution.

A package need only be created once, and then allows the software to be easily deployed any number of times on any number of
computers worldwide.

1,000 people spending 2 hours each doing cave man (ad hoc) installations = 2000 man-hours = 1 year’s salary.

1 person spending 2 hours creating a package + 999 spending 2 seconds typing a package install command = 2.55 man-hours.

There is a significant, but one-time investment in learning to package software. Once learned, creating a package usually takes
LESS time than a cave man install.

Have you ever been in a panic because your server went down and you’re approaching a deadline to get your analysis or models
done? If you deploy the software with a package manager, no problem... Just install it on another machine and carry on. If you’ve
done a caveman install, you might be dead in the water for a while until you can restore the server or duplicate the installation on
another.

Some packages managers allow the end-user to build from source with many combinations of options, compilers, alternate
libraries (BLAS, Atlas, OpenBLAS). FreeBSD ports, Gentoo Portage, MacPorts, pkgsrc.

This provides the user more flexibility.

Binary packages distributed by any package manager must be portable and thus use only minimal optimizations. We can do
optimized builds from source (make.conf, mk.conf or command-line additions) such as -march=native.

Building from source takes longer, but is no more difficult for you. It also provides many advantages, such as:

• The ability to build an optimized installation. Binary (precompiled) packages must be able to run on most CPUs still in use,
so they do not take advantage of the latest CPU features (such as AVX2 as of this writing in February 2019). When compiling
a package from source, we can add compiler flags such as -march=native to optimize for the local CPU. The package
produced may not work on older CPUs.

• The ability to install to a different prefix. This can be useful for doing multiple installations with different build options, or
installing multiple versions of the same software.

• The ability to easily install software whose license does not allow redistribution in binary form

• The ability to easily test patches.

It also makes it easy to use the package manager to systematically deploy work-in-progress packages that are not yet complete
and for which no binary packages have been built.

Most package managers work only on one platform or possible a few closely related platforms. Some work on multiple platforms
with some limitations. The pkgsrc package manager is unique in that it provides general purpose package management for any
Unix compatible platform.

Table 6.2 provides some information about popular package managers.

A direct comparison of which collection is "biggest" is not really feasible. A raw count of Debian packages will produce a higher
number than the others, but this is in part due to the Debian tradition of creating separate packages for documentation (-doc pack-
ages) and header files (-dev packages). FreeBSD ports and many other package managers traditionally include documentation
and headers in the core package. For example, below are listings of FFTW (fast Fourier transform) packages on Debian and
FreeBSD:

Unix Users’s Guide 169 / 177

Name Platforms Build From Source?
Conda Linux, Mac, Windows No

dports Dragonfly BSD (derived from
FreeBSD ports) Yes

Debian Packages Debian-based (Debian, Ubuntu, etc) No
FreeBSD Ports FreeBSD, Dragonfly BSD* Yes
MacPorts OS X Yes
pkgsrc Any POSIX Yes
Portage Gentoo Linux Yes
Yum/RPM Redhat Enterprise Linux, CentOS No

Table 6.2: Package Manager Comparison

Software in the RHEL Yum repository also tends to be older versions than you will find in Debian, FreeBSD, or Gentoo packages.

This is in no way a criticism of Red Hat Enterprise Linux, but simply illustrates that it was designed for a different purpose,
namely highly stable enterprise servers running commercial software. The packages in Yum are intended to remain binary
compatible with commercial applications for 7 years, not to provide the latest open source applications.

The Pkgsrc software management system can be used to maintain more recent open source software on enterprise Linux systems,
separate from the commercial software and support software installed via Yum. Pkgsrc offers over 17,000 packages, most of
which are tested on CentOS.

Pkgsrc has the additional benefit of being the only cross-platform SMS. It can currently be used to install most packages on
NetBSD, Dragonfly BSD, Linux, Mac OS X, and Interix (a MS Windows Unix layer).

Even if you have to manually build and install your own software, you can probably install most of the the prerequisites from an
SMS. Doing so will save you time and avoid conflicting installations of the same package on your system.

Better yet, learn how to create packages for an SMS, so that others don’t have to duplicate your effort in the future. Each SMS
is a prime example of global collaboration, where each user leverages the work of thousands of others. The best way to support
this collaboration is by contributing to it, even if in a very small way.

6.4.2 FreeBSD Ports

The FreeBSD ports system represents one of the largest package collections available, and it runs on a platform offering enterprise
stability and near-optimal performance.

29,483 packages as of Feb 2 2018.

Port options allow many possible build option combinations for some ports (R is a good example). Some other package managers
would require separate binary packages to provide the same support.

Most core scientific libraries are well-tested and maintained. (BLAS, LAPACK, Eigen, R, Octave, mpich2, openmpi, etc.)

Easy to deploy latest open source software, easy to convert to pkgsrc for deployment on other POSIX systems. Great scientific
computing platform and sandbox environment.

Advanced development tools (ports-mgmt category), portlint, stage-qa, poudriere.

DEVELOPER=yes

Security checks

shell-prompt: pkg install R

shell-prompt: cd /usr/ports/math/R
shell-prompt: make rmconfig
shell-prompt: make install

Unix Users’s Guide 170 / 177

Port options dialog for R:

Porter’s Handbook

Example: http://acadix.biz/hello.php

Install freebsd-ports-wip: https://github.com/outpaddling/freebsd-ports-wip

Add the following to ~root/.porttools:

EMAIL="your-email@some.domain"
FULLNAME="Your Full Name"

shell-prompt: pkg install porttools
shell-prompt: wip-update
shell-prompt: wip-reinstall-port port-dev
shell-prompt: cd /usr/ports/wip
shell-prompt: port create hello

The port directory name given here should usually be all lower-case,
except for ports using perl CPAN and a few other cases. The PORTNAME
is usally lower-cased as well, but there is not general agreement on this.
It’s not that important as "pkg install" is case-insensitive.

shell-prompt: cd hello
shell-prompt: wip-edit

See /usr/ports/Mk/bsd.licenses.db.mk for list of valid licenses.
You can comment out LICENSE_FILE= until after the distfile is downloaded
and unpacked if that’s more convenient that figure out it’s location
via the web. It should usually be prefixed with ${WRKSRC}, e.g.

LICENSE_FILE= ${WRKSRC}/COPYING

shell-prompt: port-check
shell-prompt: port-remake

Thorough port testing:

shell-prompt: port-poudriere-setup
ZFS pool []: (just hit enter)
Configuration file opens in vi, accept defaults.
shell-prompt: wip-poudriere-test hello all

Unix Users’s Guide 171 / 177

The port-poudriere-setup script will create a basic poudriere setup and a FreeBSD jail for building and testing ports on the
underlying architecture and operating system. It also offers the option to create additional jails for older operating systems and
lower architectures (i386 if you are running amd64).

The wip-poudriere-test script runs "poudriere testport" on the named port in the wip collection.

Other useful poudriere commands:

shell-prompt: poudriere ports -u

Updates the ports tree used by poudriere. This will obsolete any binary
packages saved from previous builds if the corresponding port is upgraded.
Hence, your next poudriere build may take much longer.

shell-prompt: poudriere bulk wip/hello

This will build a binary package for the named port, which you can deploy
with "pkg add" on other systems.

Run "poudriere" or "poudriere <command>" or "man poudriere" for help.

Example 2: https://github.com/cdeanj/snpfinder

shell-prompt: cd /usr/ports/wip
shell-prompt: port create snpfinder

USE_GITHUB=yes
GH_ACCOUNT=cdeanj
DISTVERSION=1.0.0

shell-prompt: cd snpfinder
shell-prompt: wip-edit
shell-prompt: port-patch-vi work/snpfinder-1.0.0
shell-prompt: port-check
shell-prompt: port-remake

6.4.3 Pkgsrc

Pkgsrc was forked from FreeBSD ports in 1997 by the NetBSD project.

Like everything in the NetBSD project, the primary focus is portability. Pkgsrc aims to support all POSIX environments. Top-tier
support for NetBSD, Linux, SmartOS. Strong support for Mac OS X, other BSDs.

Over 18,000 packages as of Feb 2018.

Tools analogous to FreeBSD ports, but often less developed. pkglint, stage-qa, pbulk.

url2pkg, fbsd2pkg

PKG_DEVELOPER=yes

Pkgsrc Guide (both user and packager documentation)

Example: http://acadix.biz/hello.php

Log into a system using pkgsrc (NetBSD, Linux, Mac, etc.)

Install pkgsrc-wip: https://www.pkgsrc.org/wip/

Install uwm-pkgsrc-wip: https://github.com/outpaddling/uwm-pkgsrc-wip

Note The uwm-pkgsrc-wip project is being phased out, but still contains some useful tools.

Unix Users’s Guide 172 / 177

shell-prompt: cd /usr/pkgsrc/uwm-pkgsrc-wip/pkg-dev
shell-prompt: bmake install

Install FreeBSD ports and wip on your pkgsrc system: (ports collection is mirrored on Github if you prefer git)

shell-prompt: pkgin install subversion
shell-prompt: svn co https://svn.FreeBSD.org/ports/head /usr/ports
shell-prompt: cd /usr/ports
shell-prompt: svn co https://github.com/outpaddling/freebsd-ports-wip.git wip

Convert the FreeBSD port to pkgsrc:

shell-prompt: cd /usr/pkgsrc/uwm-pkgsrc-wip/fbsd2pkg
shell-prompt: bmake install
shell-prompt: cd ..
shell-prompt: fbsd2pkg /usr/ports/wip/hello your-email-address

You can run the above command repeatedly until the package is done.

shell-prompt: cd hello
shell-prompt: pkg-check
shell-prompt: pkglint -e
shell-prompt: pkglint -Wall

Create the package from scratch using url2pkg:

shell-prompt: mkdir hello
shell-prompt: cd hello
shell-prompt: url2pkg http://acadix.biz/Ports/distfiles/hello-1.0.tar.xz

6.5 What’s Wrong with Containers?

Absolutely nothing. Containers are great and play many important roles in computing, especially in development and security.

There are problems with the way some people use them, however. As is often the case, containers have become a solution looking
for problems. Many people use them because they think it’s "cool" or because it’s a path of least resistance.

In scientific computing, containers are often used to isolate badly designed or badly implemented software that is otherwise
difficult to install outside a container. For example, software build systems that bundle share libraries can cause conflicts with
other versions of the same shared library.

Aside There is no problem that cannot be "solved" by adding another layer of software. This is never a solution, however, and
is generally short-sighted.

Isolating such software in a container will get it up and running and work around conflicts, but with some major down sides:

• It eliminates the motivation to clean up the software, contributing to the de-evolution of software.

• It adds overhead to running the software. (Many modern containers advertise their low overhead for this reaason.)

Misusing containers in this creates more disorder and complexity where there is already too little IT talent available to manage
things well.

Unix Users’s Guide 173 / 177

Chapter 7

Running Multiple Operating Systems

You don’t necessarily need to maintain a second computer in order to run Unix in addition to Windows. All mainstream Unix
operating systems can be installed on a PC alongside Windows on a separate partition, or installed in a virtual machine (VM),
such as Oracle VirtualBox, which is also available for free.

VMs are software packages that pretend to be computer hardware. You can install an entire operating system plus the software
you need on the VM as if it were a real computer. The OS running under the VM is called the guest OS, and the OS running the
VM on the real hardware is called the host.

Computational code runs at the same speed in the guest operating system as it does in the host. The main limitation imposed on
guest operating systems is graphics speed. If you run applications requiring fast 3D rendering, such as video players, they should
be run on the host operating system.

There are many VMs available for x86-based PC hardware, including VirtualBox, http://www.virtualbox.org/, which is free and
open source, and runs on many different host platforms including FreeBSD, Linux, Mac OS X, Solaris, and Windows.

Running a Unix guest in a VM on Windows or Windows as a guest under Unix will provide a cleaner and more complete Unix
experience than can be achieved with a compatibility layer like Cygwin. The main disadvantage of a VM is the additional disk
space and memory required for running two operating systems at once. However, given the low cost of today’s hardware, this
doesn’t usually present a problem on modern PCs.

Virtual machines are most often used to run Windows as a guest on a Unix system, to provide access to Windows-only applications
to Unix (including Mac) users without maintaining a second computer. This configuration is best supported, and offers the most
seamless integration between host and guest. An example is shown in Figure 7.1.

http://www.virtualbox.org/

Unix Users’s Guide 174 / 177

Figure 7.1: Windows as a Guest under VirtualBox on a Mac Host

Another issue is that Windows systems need to be rebooted frequently, often several times per week, to activate security updates.
Most Unix systems, on the other hand, can run uninterrupted for months at a time. (FreeBSD systems will typically run for years,
if your power source is that stable.) There are far fewer security updates necessary for Unix systems, and most updates can be
installed without rebooting. Rebooting a host OS requires rebooting all guests as well, but rebooting a guest OS does not affect
the host. Hence, it’s best to run the most stable system as the host.

If necessary, it is possible to run Unix as a guest under Windows. FreeBSD and many Linux distributions are fully supported as
VirtualBox guest operating systems.

Unix Users’s Guide 175 / 177

Figure 7.2: CentOS 7 with Gnome Desktop as a Guest under VirtualBox

Unix Users’s Guide 176 / 177

Figure 7.3: FreeBSD with Lumina Dekstop as a Guest under VirtualBox

Unix Users’s Guide 177 / 177

Chapter 8

Index

P
packages system, 166
ports system, 166

R
rsync, 95

S
ssh_config, 102

U
UI, 11
User interface, 11

V
virtual desktop, 13

W
workspace, 13

	Using Unix
	KISS: Keep It Simple, Stupid
	Practice

	What is Unix?
	Aw, man... I Have to Learn Another System?
	Operating System or Religion?
	The Unix Standard API
	Shake Out the Bugs
	The Unix Standard UI
	Fast, Stable and Secure
	Sharing Resources
	Practice

	Unix User Interfaces
	Graphical User Interfaces (GUIs)
	X11 on Mac OS X
	Command Line Interfaces (CLIs): Unix Shells
	Terminals
	Basic Shell Use
	Practice

	Still Need Windows? Don't Panic!
	Cygwin: Try This First
	Windows Subsystem for Linux: Another Compatibility Layer
	Practice

	Logging In Remotely
	Unix to Unix
	Windows to Unix
	Cygwin
	PuTTY

	Terminal Types
	Practice

	Unix Command Basics
	Practice

	Basic Shell Tools
	Common Unix Shells
	Command History
	Auto-completion
	Command-line Editing
	Globbing (File Specifications)
	Practice

	Processes
	Practice

	The Unix File System
	Unix Files
	Text vs Binary Files
	Unix vs. Windows Text Files

	File system Organization
	Basic Concepts
	Absolute Path Names
	Current Working Directory
	Relative Path Names
	Avoid Absolute Path Names
	Special Directory Names

	Ownership and Permissions
	Overview
	Viewing Permissions
	Setting Permissions

	Practice

	Unix Commands and the Shell
	Internal Commands
	External Commands
	Getting Help
	A Basic Set of Unix Commands
	File and Directory Management
	Shell Internal Commands
	Simple Text File Processing
	Text Editors
	Networking
	Identity and Access Management
	Terminal Control

	Practice

	POSIX and Extensions
	Practice

	Subshells
	Practice

	Redirection and Pipes
	Device Independence
	Redirection
	Special Files in /dev
	Pipes
	Misusing Pipes
	Practice

	Power Tools for Data Processing
	Introduction
	grep
	awk
	cut
	sed
	sort
	tr
	find
	xargs
	bc
	tar
	gzip, bzip2, xz
	zip, unzip
	time
	top
	iostat
	netstat
	iftop
	curl, fetch, wget
	Practice

	File Transfer
	File Transfers from Unix

	Environment Variables
	Self-test

	Shell Variables
	Self-test

	Process Control
	External Commands
	Special Key Combinations
	Internal Shell Commands and Symbols
	Self-test

	Remote Graphics
	Configuration Steps Common to all Operating Systems
	Graphical Programs on Windows with Cygwin
	Installation
	Configuration
	Start-up

	Where to Learn More

	Unix Shell Scripting
	What is a Shell Script?
	Self-test

	Scripts vs Programs
	Self-test

	Why Write Shell Scripts?
	Efficiency and Accuracy
	Self-test

	Documentation
	Self-test

	Why Unix Shell Scripts?
	Self-test

	Self-test

	Which Shell?
	Common Shells
	Self-test

	Writing and Running Shell Scripts
	Self-test

	Shell Start-up Scripts
	Self-test

	Sourcing Scripts
	Self-test

	Scripting Constructs
	Strings
	Output
	Self-test

	Shell and Environment Variables
	Assignment Statements
	Variable References
	Using Variables for Code Quality
	Output Capture
	Self-test

	Hard and Soft Quotes
	Self-test

	User Input
	Self-test

	Conditional Execution
	Command Exit Status
	If-then-else Statements
	Bourne Shell Family
	C shell Family

	Conditional Operators
	Case and Switch Statements
	Self-test

	Loops
	For and Foreach
	While Loops
	Self-test

	Generalizing Your Code
	Hard-coding: Failure to Generalize
	Generalizing with User Input
	Generalizing with Command-line Arguments
	Bourne Shell Family
	C shell Family

	Self-test

	Scripting an Analysis Pipeline
	What's an Analysis Pipeline?
	Where do Pipelines Come From?
	Implementing Your Own Pipeline
	An Example Genomics Pipeline

	Functions and Calling other Scripts
	Bourne Shell Functions
	C Shell Separate Scripts
	Self-test

	Alias
	Shell Flags and Variables
	Arrays
	Good and Bad Practices
	Here Documents
	Common Unix Tools Used in Scripts
	Grep
	Stream Editors
	Tabular Data Tools
	Sort/Uniq
	Perl, Python, and other Scripting Languages

	I Systems Management
	Systems Management
	Guiding Principals
	Attachment is the Cause of All Suffering

	Platform Selection
	General Advice
	Choosing Your Unix the Smart Way
	RHEL/CentOS Linux
	FreeBSD
	Running a Desktop Unix System
	Unix File System Comparison
	Network File System

	System Security
	Securing a new System
	I've Been Hacked!

	Software Management
	The Stone Age vs. Today
	Goals
	The Computational Science Time Line
	Development Time
	Deployment Time
	Learning Time
	Run Time

	Package Managers
	Motivation
	FreeBSD Ports
	Pkgsrc

	What's Wrong with Containers?

	Running Multiple Operating Systems

	Index

